版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省尋甸縣第五中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.2.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.如圖,四棱錐的底面是矩形,設(shè),,,是棱上一點,且,則()A. B.C. D.4.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離5.曲線的一個焦點F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標原點,若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.6.在空間直角坐標系中,點關(guān)于軸的對稱點為點,則點到直線的距離為()A B.C. D.67.已知命題“若,則”,命題“若,則”,則下列命題中為真命題的是()A. B.C. D.8.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.9.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓10.已知橢圓與雙曲線有共同的焦點,則()A.14 B.9C.4 D.211.,則與分別為()A.與 B.與C.與0 D.0與12.已知等差數(shù)列的公差為,前項和為,等比數(shù)列的公比為,前項和為.若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與平行,則___________.14.過點的直線與拋物線相交于,兩點,,則直線的方程為______.15.若,且,則的最小值是____________.16.以正方體的對角線的交點為坐標原點O建立右手系的空間直角坐標系,其中,,,則點的坐標為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知項數(shù)為的數(shù)列是各項均為非負實數(shù)的遞增數(shù)列.若對任意的,(),與至少有一個是數(shù)列中的項,則稱數(shù)列具有性質(zhì).(1)判斷數(shù)列,,,是否具有性質(zhì),并說明理由;(2)設(shè)數(shù)列具有性質(zhì),求證:;(3)若數(shù)列具有性質(zhì),且不是等差數(shù)列,求項數(shù)的所有可能取值.18.(12分)在平面直角坐標系xOy中,圓O以原點為圓心,且經(jīng)過點.(1)求圓O的方程;(2)若直線與圓O交于兩點A,B,求弦長.19.(12分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過點的切線方程.20.(12分)已知函數(shù).(1)當時,解不等式;(2)若不等式的解集為,求實數(shù)的取值范圍.21.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實數(shù)的取值范圍.22.(10分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點,M是棱PC的中點,,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因為,則,由勾股定理得,即,整理得,故.故選:A.2、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因為函數(shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.3、B【解析】根據(jù)空間向量基本定理求解【詳解】由已知故選:B4、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因為,所以,圓的圓心的坐標為,半徑,將圓化為標準方程為,其圓心的坐標為,半徑,圓心距,兩圓內(nèi)切,故選:B5、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A6、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.7、D【解析】利用指數(shù)函數(shù)的單調(diào)性可判斷命題的真假,利用特殊值法可判斷命題的真假,結(jié)合復(fù)合命題的真假可判斷出各選項中命題的真假.【詳解】對于命題,由于函數(shù)為上的增函數(shù),當時,,命題為真命題;對于命題,若,取,,則,命題為假命題.所以,、、均為假命題,為真命題.故選:D.【點睛】本題考查簡單命題和復(fù)合命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.8、D【解析】先設(shè),代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因為為純虛數(shù),所以,解得,所以的虛部為:.故選:D.9、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:10、C【解析】根據(jù)給定條件結(jié)合橢圓、雙曲線方程的特點直接列式計算作答.【詳解】設(shè)橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點,則在雙曲線中,,即有,解得,所以.故選:C11、C【解析】利用正弦函數(shù)和常數(shù)導(dǎo)數(shù)公式,結(jié)合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C12、D【解析】用基本量表示可得基本量的關(guān)系式,從而可得,故可得正確的選項.【詳解】若,則,而,此時,這與題設(shè)不合,故,故,故,而,故,此時不確定,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進行檢驗即可求解.【詳解】因為直線與平行,所以,解得或,又因為時,,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點睛】(1)當直線的方程中存在字母參數(shù)時,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時還要注意x,y的系數(shù)不能同時為零這一隱含條件(2)在判斷兩直線平行、垂直時,也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論14、##【解析】根據(jù)拋物線方程可得焦點坐標,進而點P為拋物線的焦點,設(shè),利用拋物線的定義可得,有軸,即可得出結(jié)果.【詳解】由題意知,拋物線的焦點坐標,又,所以點P為拋物線的焦點,設(shè),由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:15、【解析】應(yīng)用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當且僅當,且,即時等號成立,∴最小值為.故答案為:16、【解析】根據(jù)已知點的坐標,確定出坐標系即可得【詳解】如圖,由已知得坐標系如圖所示,軸過正方形的對角線交點,軸過中點,軸過中點,因此可知坐標為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)數(shù)列,,,不具有性質(zhì);(2)證明見解析;(3)可能取值只有.【解析】(1)由數(shù)列具有性質(zhì)的定義,只需判斷存在與都不是數(shù)列中的項即可.(2)由性質(zhì)知:、,結(jié)合非負遞增性有,再由時,必有,進而可得,,,,,應(yīng)用累加法即可證結(jié)論.(3)討論、、,結(jié)合性質(zhì)、等差數(shù)列的性質(zhì)判斷是否存在符合題設(shè)性質(zhì),進而確定的可能取值.【小問1詳解】數(shù)列,,,不具有性質(zhì).因為,,和均不是數(shù)列,,,中的項,所以數(shù)列,,,不具有性質(zhì).【小問2詳解】記數(shù)列的各項組成的集合為,又,由數(shù)列具有性質(zhì),,所以,即,所以.設(shè),因為,所以.又,則,,,,.將上面的式子相加得:.所以.【小問3詳解】(i)當時,由(2)知,,,這與數(shù)列不是等差數(shù)列矛盾,不合題意.(ii)當時,存在數(shù)列,,,,符合題意,故可取.(iii)當時,由(2)知,.①當時,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②兩式相減得:,這與數(shù)列不是等差數(shù)列矛盾,不合題意.綜上,滿足題設(shè)的的可能取值只有.【點睛】關(guān)鍵點點睛:第二問,由可知,并應(yīng)用累加法求證結(jié)論;第三問,討論k的取值,結(jié)合的性質(zhì),由性質(zhì)、等差數(shù)列的性質(zhì)判斷不同k的取值情況下數(shù)列的存在性即可.18、(1)(2)【解析】(1)根據(jù)兩點距離公式即可求半徑,進而得圓方程;(2)根據(jù)直線與圓的弦長公式即可求解【小問1詳解】由,所以圓O的方程為;【小問2詳解】由點O到直線的距離為所以弦長19、(1);(2).【解析】(1)首先求導(dǎo)函數(shù),計算,接著根據(jù)導(dǎo)數(shù)的幾何意義確定切線的斜率,最后根據(jù)點斜式寫出直線方程即可;(2)因為點不在曲線上,所以設(shè)切點為,根據(jù)導(dǎo)數(shù)的幾何意義寫出切線的方程,代入點求解,最后寫出切線方程即可.【詳解】(1).,.所以曲線在處的切線方程為,即(2)設(shè)切點為,則曲線在點處的切線方程為,代入點得,,.所以曲線過點的切線方程為,即.20、(1);(2).【解析】(1)將不等式分解因式,即可求得不等式解集;(2)根據(jù)不等式解集,考慮其對應(yīng)二次函數(shù)的特征,即可求出參數(shù)的范圍.【小問1詳解】當時,即,也即,則,解得或,故不等式解集為.【小問2詳解】不等式的解集為,即的解集為,也即的解集為,故其對應(yīng)二次函數(shù)的,解得.故實數(shù)的取值范圍為:.21、(1)答案見解析;(2).【解析】(1)求出函數(shù)的定義域為,求得,分、、三種情況討論,分析導(dǎo)數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對實數(shù)分和兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗證是否成立,由此可得出實數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域為,.(i)當時,,函數(shù)在上單調(diào)遞增;(ii)當時,令得.若,則;若,則.①當時,,函數(shù)在上單調(diào)遞增;②當時,,當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減;綜上,可得,當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當時,單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當時,,于是,函數(shù)在上單調(diào)遞增,恒成立,符合題意;當時,由于,,,所以,存在,使得.當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增.故,不符合題意,綜上所述,實數(shù)的取值范圍是.【點睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問題,考查分類討論思想的應(yīng)用,屬于難題.22、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度育嬰師專業(yè)培訓(xùn)及就業(yè)合同
- 2025年智能交通系統(tǒng)解決方案定制合同3篇
- 2025年度禽蛋養(yǎng)殖廢棄物資源化利用合同4篇
- 2025年度早餐店連鎖經(jīng)營承包合同范本4篇
- 二零二五年航空遙感地形圖測繪與數(shù)據(jù)應(yīng)用合同2篇
- 個人舊房屋買賣合同書(2024版)
- 2025年高校學(xué)生實習(xí)就業(yè)指導(dǎo)與服務(wù)合同2篇
- 二零二五年房地產(chǎn)代理撤場與客戶滿意度調(diào)查及滿意度提升合同3篇
- 2025版影視版權(quán)收購合同范本(含劇本改編權(quán))3篇
- 二手房代理銷售2024傭金合同版B版
- 2025屆安徽省皖南八校高三上學(xué)期8月摸底考試英語試題+
- 工會資金采購管理辦法
- 玩具活動方案設(shè)計
- Q∕GDW 516-2010 500kV~1000kV 輸電線路劣化懸式絕緣子檢測規(guī)程
- 2024年湖南汽車工程職業(yè)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 家長心理健康教育知識講座
- GB/T 292-2023滾動軸承角接觸球軸承外形尺寸
- 軍人結(jié)婚函調(diào)報告表
- 民用無人駕駛航空器實名制登記管理規(guī)定
- 北京地鐵6號線
評論
0/150
提交評論