版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇百校聯(lián)考2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若數(shù)列滿(mǎn)足,則()A. B.C. D.2.過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),點(diǎn)是原點(diǎn),若;則的面積為()A. B.C. D.3.圓C:的圓心坐標(biāo)和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和4.直線(xiàn)與直線(xiàn)平行,則兩直線(xiàn)間的距離為()A. B.C. D.5.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.26.下列說(shuō)法中正確的是()A.棱柱的側(cè)面可以是三角形B.棱臺(tái)的所有側(cè)棱延長(zhǎng)后交于一點(diǎn)C.所有幾何體的表面都能展開(kāi)成平面圖形D.正棱錐的各條棱長(zhǎng)都相等7.已知等比數(shù)列,且,則()A.16 B.32C.24 D.648.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-39.閱讀如圖所示程序框圖,運(yùn)行相應(yīng)的程序,輸出的S的值等于()A.2 B.6C.14 D.3010.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形11.已知點(diǎn)的坐標(biāo)為(5,2),F(xiàn)為拋物線(xiàn)的焦點(diǎn),若點(diǎn)在拋物線(xiàn)上移動(dòng),當(dāng)取得最小值時(shí),則點(diǎn)的坐標(biāo)是A.(1,) B.C. D.12.下列語(yǔ)句為命題的是()A. B.你們好!C.下雨了嗎? D.對(duì)頂角相等二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿(mǎn)足,則的取值范圍是____________14.某班有位同學(xué),將他們從至編號(hào),現(xiàn)用系統(tǒng)抽樣的方法從中選取人參加文藝演出,抽出的編號(hào)從小到大依次排列,若排在第一位的編號(hào)是,那么第四位的編號(hào)是______15.知函數(shù),若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)____________.16.若,是雙曲線(xiàn)與橢圓的共同焦點(diǎn),點(diǎn)P是兩曲線(xiàn)的一個(gè)交點(diǎn),且為等腰三角形,則該雙曲線(xiàn)的漸近線(xiàn)為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知幾何體中,平面平面,是邊長(zhǎng)為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值18.(12分)根據(jù)下列條件求圓的方程:(1)圓心在點(diǎn)O(0,0),半徑r=3(2)圓心在點(diǎn)O(0,0),且經(jīng)過(guò)點(diǎn)M(3,4)19.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(diǎn)(1)求證:平面;(2)求證:平面20.(12分)設(shè)等差數(shù)列的各項(xiàng)均為整數(shù),且滿(mǎn)足對(duì)任意正整數(shù),總存在正整數(shù),使得,則稱(chēng)這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項(xiàng)公式為,數(shù)列是否具有性質(zhì)?并說(shuō)明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對(duì)于給定的,具有性質(zhì)的數(shù)列是有限個(gè),還是可以無(wú)窮多個(gè)?(直接寫(xiě)出結(jié)論)21.(12分)(1)已知集合,.:,:,并且是的充分條件,求實(shí)數(shù)的取值范圍(2)已知:,,:,,若為假命題,求實(shí)數(shù)的取值范圍22.(10分)在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),且離心率.(1)求橢圓的方程;(2)直線(xiàn)的斜率為,直線(xiàn)l與橢圓交于兩點(diǎn),求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用前項(xiàng)積與通項(xiàng)的關(guān)系可求得結(jié)果.【詳解】由已知可得.故選:C.2、C【解析】拋物線(xiàn)焦點(diǎn)為,準(zhǔn)線(xiàn)方程為,由得或所以,故答案為C考點(diǎn):1、拋物線(xiàn)的定義;2、直線(xiàn)與拋物線(xiàn)的位置關(guān)系3、C【解析】先將方程化為一般形式,再根據(jù)公式計(jì)算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為故選:C4、B【解析】先根據(jù)直線(xiàn)平行求得,再根據(jù)公式可求平行線(xiàn)之間的距離.【詳解】由兩直線(xiàn)平行,得,故,當(dāng)時(shí),,,此時(shí),故兩直線(xiàn)平行時(shí)又之間的距離為,故選:B.5、C【解析】設(shè)的首項(xiàng)為,把已知的兩式相減即得解.【詳解】解:設(shè)的首項(xiàng)為,根據(jù)題意得,兩式相減得.故選:C6、B【解析】根據(jù)棱柱、棱臺(tái)、球、正棱錐結(jié)構(gòu)特征依次判斷選項(xiàng)即可.【詳解】棱柱的側(cè)面都是平行四邊形,A不正確;棱臺(tái)是由對(duì)應(yīng)的棱錐截得的,B正確;不是所有幾何體的表面都能展開(kāi)成平面圖形,例如球不能展開(kāi)成平面圖形,C不正確;正棱錐的各條棱長(zhǎng)并不是都相等,應(yīng)該為正棱錐的側(cè)棱長(zhǎng)都相等,所以D不正確.故選:B.7、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A8、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因?yàn)?,,且q為整數(shù),所以,,即q=2.所以.故選:A9、C【解析】模擬運(yùn)行程序,直到得出輸出的S的值.【詳解】運(yùn)行程序框圖,,,;,,;,,;,輸出.故選:C10、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C11、D【解析】過(guò)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,則,當(dāng)且僅當(dāng)三點(diǎn)共線(xiàn)時(shí)等號(hào)成立,此時(shí),故,所以,選D12、D【解析】根據(jù)命題的定義判斷即可.【詳解】因?yàn)槟軌蚺袛嗾婕俚恼Z(yǔ)句叫作命題,所以ABC錯(cuò)誤,D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】去絕對(duì)值分別列出每個(gè)象限解析式,數(shù)形結(jié)合利用距離求解范圍.【詳解】當(dāng),表示橢圓第一象限部分;當(dāng),表示雙曲線(xiàn)第四象限部分;當(dāng),表示雙曲線(xiàn)第二象限部分;當(dāng),不表示任何圖形;以及兩點(diǎn),作出大致圖象如圖:曲線(xiàn)上的點(diǎn)到的距離為,根據(jù)雙曲線(xiàn)方程可得第二四象限雙曲線(xiàn)漸近線(xiàn)方程都是,與距離為2,曲線(xiàn)二四象限上的點(diǎn)到的距離為小于且無(wú)限接近2,考慮曲線(xiàn)第一象限的任意點(diǎn)設(shè)為到的距離,當(dāng)時(shí)取等號(hào),所以,則的取值范圍是故答案為:14、29【解析】根據(jù)給定信息利用系統(tǒng)抽樣的特征直接計(jì)算作答.【詳解】因系統(tǒng)抽樣是等距離抽樣,依題意,相鄰兩個(gè)編號(hào)相距,所以第四位的編號(hào)是.故答案為:2915、【解析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點(diǎn)的分布,進(jìn)而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時(shí)為單調(diào)函數(shù),時(shí)無(wú)零點(diǎn),故要使有兩個(gè)不同的零點(diǎn),即兩側(cè)各有一個(gè)零點(diǎn),所以在上必遞減且,則,可得.故答案為:16、【解析】根據(jù)給定條件求出兩曲線(xiàn)的共同焦點(diǎn),再由橢圓、雙曲線(xiàn)定義求出a,b即可計(jì)算作答.【詳解】橢圓的焦點(diǎn),由橢圓、雙曲線(xiàn)的對(duì)稱(chēng)性不妨令點(diǎn)P在第一象限,因?yàn)榈妊切?,由橢圓的定義知:,則,,由雙曲線(xiàn)定義知:,即,,,所以雙曲線(xiàn)的漸近線(xiàn)為:.故答案為:【點(diǎn)睛】易錯(cuò)點(diǎn)睛:雙曲線(xiàn)(a>0,b>0)漸近線(xiàn)方程為,而雙曲線(xiàn)(a>0,b>0)的漸近線(xiàn)方程為(即),應(yīng)注意其區(qū)別與聯(lián)系.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)菱形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線(xiàn)面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】(1)證明:連接,交于點(diǎn),∵四邊形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中點(diǎn),連接,∵是邊長(zhǎng)為4的菱形,,∴,,以為原點(diǎn),,,所在直線(xiàn)分別為,,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,∴,,設(shè)平面的法向量為,則,即,令,則,,∴,同理可得,平面的一個(gè)法向量為,∴,由圖知,平面與平面所成角為銳角,故平面與平面所成角余弦值為18、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根據(jù)圓心坐標(biāo)和半徑,即可得到答案;(2)利用兩點(diǎn)間的距離公式,求出圓的半徑,即可得到答案;【小問(wèn)1詳解】根據(jù)題意,圓心在點(diǎn)O(0,0),半徑r=3,則要求圓的方程為x2+y2=9;【小問(wèn)2詳解】圓心在點(diǎn)O(0,0),且經(jīng)過(guò)點(diǎn)M(3,4),要求圓的半徑r==5,則要求圓的方程為x2+y2=25;19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)連接,交于點(diǎn)M,連接ME,則M為中點(diǎn).根據(jù)三角形的中位線(xiàn)定理和平行四邊形的判斷和性質(zhì)可證得,再由線(xiàn)面平行的判定定理可得證;(2)由線(xiàn)面垂直的性質(zhì)和判定可得證.【詳解】證明:(1)連接,交于點(diǎn)M,連接ME,則M為中點(diǎn)因?yàn)镋、F分別是與的中點(diǎn),所以,則,從而為平行四邊形,則又因?yàn)槠矫嫫矫?,所以平面?)由平面,因?yàn)槠矫妫远?,M為的中點(diǎn),所以因?yàn)?,所以平面,由?)有,故平面20、(1)數(shù)列具有性質(zhì),理由見(jiàn)解析;(2),;(3)有限個(gè).【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個(gè)數(shù)是否有限.【小問(wèn)1詳解】由,對(duì)任意正整數(shù),,說(shuō)明仍為數(shù)列中的項(xiàng),∴數(shù)列具有性質(zhì).【小問(wèn)2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時(shí)對(duì)任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項(xiàng).易知:可取,對(duì)應(yīng)得到個(gè)滿(mǎn)足條件的等差數(shù)列.【小問(wèn)3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個(gè),∴具有性質(zhì)的數(shù)列是有限個(gè).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)性質(zhì)的定義,在第2、3問(wèn)中判斷滿(mǎn)足等差數(shù)列通項(xiàng)公式,結(jié)合各項(xiàng)均為整數(shù),判斷公差的個(gè)數(shù)是否有限即可.21、(1);(2)【解析】(1)由二次函數(shù)的性質(zhì),求得,又由,求得集合,根據(jù)命題是命題的充分條件,所以,列出不等式,即可求解(2)依題意知,均為假命題,分別求得實(shí)數(shù)的取值范圍,即可求解【詳解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因?yàn)槊}是命題的充分條件,所以,則,解得或,∴實(shí)數(shù)的取值范圍是.(2)依題意知,,均為假命題,當(dāng)是假命題時(shí),恒成立,則有,當(dāng)是假命題時(shí),則有,或.所以由均為假命題,得,即.【點(diǎn)睛】本題主要考查了復(fù)合命題的真假求參數(shù),以及充要條件的應(yīng)用,其中解答中正確得出集合間的關(guān)系,列出不等式,以及根據(jù)復(fù)合命題的真假關(guān)系求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題22、(1);(2)2.【解析】(1)由離心率,得到,再由點(diǎn)在橢圓上,得到,聯(lián)立求得,即可求得橢圓的方程.(2)設(shè)的方程為,聯(lián)立方程組,根據(jù)根系數(shù)的關(guān)系和弦長(zhǎng)公式,以及點(diǎn)到直線(xiàn)的距離公式,求得,結(jié)合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過(guò)點(diǎn),可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 訴訟代理與庭審辯護(hù)工作總結(jié)
- 幼兒捉迷藏課程設(shè)計(jì)
- 英雄之旅課程設(shè)計(jì)理念
- 酒店行業(yè)銷(xiāo)售工作總結(jié)
- IT行業(yè)員工薪酬福利制度優(yōu)化
- 2025年高考?xì)v史一輪復(fù)習(xí)之世界多極化
- 如何將愿景轉(zhuǎn)化為年度工作計(jì)劃
- 2023-2024學(xué)年福建省福州市福清市高一(下)期中語(yǔ)文試卷
- 漢字偏旁部首名稱(chēng)大全表
- 文化行業(yè)市場(chǎng)拓展總結(jié)
- 全球變暖視野下中國(guó)與墨西哥的能源現(xiàn)狀分析
- 建筑結(jié)構(gòu)荷載統(tǒng)計(jì)計(jì)算表格(自動(dòng)版)
- 學(xué)前教育學(xué)課程思政建設(shè)
- 事故隱患報(bào)告和舉報(bào)獎(jiǎng)勵(lì)制度
- 腹部外傷門(mén)診病歷
- 品質(zhì)異常處理及要求培訓(xùn)
- 模具部年終總結(jié)--ppt課件
- 立式熱虹吸再沸器機(jī)械設(shè)計(jì)說(shuō)明書(shū)
- 國(guó)家開(kāi)放大學(xué)電大《生產(chǎn)與運(yùn)作管理》2025-2026期末試題及答案
- 質(zhì)量保證大綱(共14頁(yè))
- 木材材積表0.1-10米.xls
評(píng)論
0/150
提交評(píng)論