天津市寧河縣名校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第1頁
天津市寧河縣名校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第2頁
天津市寧河縣名校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第3頁
天津市寧河縣名校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第4頁
天津市寧河縣名校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

天津市寧河縣名校2023-2024學年中考考前最后一卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.-3的相反數(shù)是()A. B.3 C. D.-32.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.43.已知,下列說法中,不正確的是()A. B.與方向相同C. D.4.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或5.下列4個數(shù):,,π,()0,其中無理數(shù)是()A. B. C.π D.()06.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.57.△ABC在網(wǎng)絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.8.如圖1,在矩形ABCD中,動點E從A出發(fā),沿AB→BC方向運動,當點E到達點C時停止運動,過點E做FE⊥AE,交CD于F點,設點E運動路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關系的大致圖象,當點E在BC上運動時,F(xiàn)C的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.9.二次函數(shù)y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)10.計算x﹣2y﹣(2x+y)的結(jié)果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:2a2﹣2=_____.12.二次根式中字母x的取值范圍是_____.13.如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為_____.14.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.15.已知關于x的二次函數(shù)y=x2-2x-2,當a≤x≤a+2時,函數(shù)有最大值1,則a的值為________.16.計算:_______________.17.如圖,點A、B、C是⊙O上的三點,且△AOB是正三角形,則∠ACB的度數(shù)是。三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求函數(shù)y=kx+b和y=的表達式;(2)已知點C(0,8),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.19.(5分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關系,部分數(shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關系:y=,設李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.直接寫出p與x,W與x之間的函數(shù)關系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?20.(8分)反比例函數(shù)的圖象經(jīng)過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.21.(10分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.22.(10分)某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖(1)所示,成本y2與銷售月份之間的關系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)分別求出y1、y2的函數(shù)關系式(不寫自變量取值范圍);通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?23.(12分)某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調(diào)查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:(1)共抽取名學生進行問卷調(diào)查;(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應的圓心角的度數(shù);(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數(shù).(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.24.(14分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:本次抽樣調(diào)查共抽取了多少名學生?求測試結(jié)果為C等級的學生數(shù),并補全條形圖;若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)相反數(shù)的定義與方法解答.【詳解】解:-3的相反數(shù)為.故選:B.【點睛】本題考查相反數(shù)的定義與求法,熟練掌握方法是關鍵.2、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結(jié)合三個圓的半徑大小即可得到本題所求答案.3、A【解析】

根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.4、A【解析】

根據(jù)平行線的性質(zhì)及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當點D與B重合時,M與F重合,當點D與A重合時,M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當時,同理可得點M運動的路徑長為故選:A.【點睛】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質(zhì)和弧長公式是解題的關鍵.5、C【解析】=3,是無限循環(huán)小數(shù),π是無限不循環(huán)小數(shù),,所以π是無理數(shù),故選C.6、C【解析】

連接AE,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質(zhì)得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【點睛】熟練掌握翻折變換、正方形的性質(zhì)、全等三角形的判定與性質(zhì)是本題的解題關鍵.7、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.8、B【解析】

易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,列出方程式即可解題.【詳解】若點E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,此時,BE=CE=x﹣,即,∴,當y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點睛】本題考查了二次函數(shù)頂點問題,考查了相似三角形的判定和性質(zhì),考查了矩形面積的計算,本題中由圖象得出E為BC中點是解題的關鍵.9、C【解析】

根據(jù)二次函數(shù)解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數(shù)得到對稱軸是直線,則拋物線與軸的兩個交點坐標關于直線對稱,∵其中一個交點的坐標為,則另一個交點的坐標為,故選C.【點睛】考查拋物線與x軸的交點坐標,解題關鍵是掌握拋物線的對稱性質(zhì).10、C【解析】

原式去括號合并同類項即可得到結(jié)果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2(a+1)(a﹣1).【解析】

先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解.【詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【點睛】本題考查了提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.12、x≤1【解析】

二次根式有意義的條件就是被開方數(shù)是非負數(shù),即可求解.【詳解】根據(jù)題意得:1﹣x≥0,解得x≤1.故答案為:x≤1【點睛】主要考查了二次根式的意義和性質(zhì).性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.13、【解析】

由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據(jù)S陰影=S△OAB-S扇形OMN,進而可得出結(jié)論.【詳解】∵六邊形ABCDEF是正六邊形,

∴∠AOB=60°,

∴△OAB是等邊三角形,OA=OB=AB=2,

設點G為AB與⊙O的切點,連接OG,則OG⊥AB,

∴∴S陰影=S△OAB-S扇形OMN=故答案為【點睛】考查不規(guī)則圖形面積的計算,掌握扇形的面積公式是解題的關鍵.14、1-1.【解析】

將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出方程是解題的關鍵.15、-1或1【解析】

利用二次函數(shù)圖象上點的坐標特征找出當y=1時x的值,結(jié)合當a≤x≤a+2時函數(shù)有最大值1,即可得出關于a的一元一次方程,解之即可得出結(jié)論.【詳解】解:當y=1時,x2-2x-2=1,

解得:x1=-1,x2=3,

∵當a≤x≤a+2時,函數(shù)有最大值1,

∴a=-1或a+2=3,即a=1.

故答案為-1或1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點的坐標特征找出當y=1時x的值是解題的關鍵.16、【解析】

先把化簡為2,再合并同類二次根式即可得解.【詳解】2-=.故答案為.【點睛】本題考查了二次根式的運算,正確對二次根式進行化簡是關鍵.17、30°【解析】試題分析:圓周角定理:同弧或等弧所對的圓周角相等,均等于所對圓心角的一半.∵△AOB是正三角形∴∠AOB=60°∴∠ACB=30°.考點:圓周角定理點評:本題屬于基礎應用題,只需學生熟練掌握圓周角定理,即可完成.三、解答題(共7小題,滿分69分)18、(1),y=2x﹣1;(2).【解析】

(1)利用待定系數(shù)法即可解答;

(2)作MD⊥y軸,交y軸于點D,設點M的坐標為(x,2x-1),根據(jù)MB=MC,得到CD=BD,再列方程可求得x的值,得到點M的坐標【詳解】解:(1)把點A(4,3)代入函數(shù)得:a=3×4=12,∴.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴點B的坐標為(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y軸于點D.∵點M在一次函數(shù)y=2x﹣1上,∴設點M的坐標為(x,2x﹣1)則點D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=∴2x﹣1=,∴點M的坐標為.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點,解決本題的關鍵是利用待定系數(shù)法求解析式.19、(1)W=;(2)李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎金.【解析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可以求得p與x,W與x之間的函數(shù)關系式,并注明自變量x的取值范圍:(2)根據(jù)題意和題目中的函數(shù)表達式可以解答本題;(3)根據(jù)(2)中的結(jié)果和不等式的性質(zhì)可以解答本題.【詳解】(1)設p與x之間的函數(shù)關系式為p=kx+b,則有,解得,,即p與x的函數(shù)關系式為p=0.5x+7(1≤x≤15,x為整數(shù)),當1≤x<10時,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,當10≤x≤15時,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)當1≤x<10時,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴當x=8時,W取得最大值,此時W=324,當10≤x≤15時,W=﹣20x+520,∴當x=10時,W取得最大值,此時W=320,∵324>320,∴李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)當1≤x<10時,令﹣x2+16x+260=299,得x1=3,x2=13,當W>299時,3<x<13,∵1≤x<10,∴3<x<10,當10≤x≤15時,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李師傅獲得獎金的的天數(shù)是第4天到第11天,李師傅共獲得獎金為:20×(11﹣3)=160(元),即李師傅共可獲得160元獎金.【點睛】本題考查了一次函數(shù)的應用,二次函數(shù)的應用等,明確題意,找出各個量之間的關系,確立函數(shù)解析式,利用函數(shù)的性質(zhì)進行解答是關鍵.20、(1)y=(2)點B(1,6)在這個反比例函數(shù)的圖象上【解析】

(1)設反比例函數(shù)的解析式是y=,只需把已知點的坐標代入,即可求得函數(shù)解析式;(2)根據(jù)反比例函數(shù)圖象上點的坐標特征進行判斷.【詳解】設反比例函數(shù)的解析式是,則,得.則這個函數(shù)的表達式是;因為,所以點不在函數(shù)圖象上.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式:設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)圖象上點的坐標特征.21、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出四邊形ADCE是平行四邊形,根據(jù)垂直推出∠ADC=90°,根據(jù)矩形的判定得出即可;(2)①求出DC,根據(jù)勾股定理求出AD,根據(jù)矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質(zhì),等腰三角形的性質(zhì),勾股定理的應用,能綜合運用定理進行推理和計算是解答此題的關鍵,比較典型,難度適中.22、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大為.【解析】

(1)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W與x的函數(shù)關系式,利用配方求出二次函數(shù)的最大值.【詳解】解:(1)設y1=kx+b,將(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.設y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.(2)收益W=y(tǒng)1﹣y2,=﹣x+1﹣(x2﹣4x+2)=﹣(x﹣5)2+,∵a=﹣<0,∴當x=5時,W最大值=.故5月出售每千克收益最大,最大為元.【點睛】本題考查了一次函數(shù)和二次函數(shù)的應用,熟練掌握待定系數(shù)法求解析式是解題關鍵,掌握配方法是求二次函數(shù)最大值常用的方法23、(1)1;(2)詳見解析;(3)750;(4).【解析】

(1)用排球的人數(shù)÷排球所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論