2025屆安徽省六安市舒城中學數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆安徽省六安市舒城中學數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆安徽省六安市舒城中學數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆安徽省六安市舒城中學數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆安徽省六安市舒城中學數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省六安市舒城中學數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,滿足約束條件,且目標函數(shù)僅在點處取得最大值,則原點到直線的距離的取值范圍是()A. B.C. D.2.已知函數(shù),則使成立的x的取值范圍是()A. B.C. D.3.函數(shù)的定義域為()A. B.C. D.4.關于的不等式恰有2個整數(shù)解,則實數(shù)的取值范圍是()A. B.C. D.5.設函數(shù)y=,當x>0時,則y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值86.設θ為銳角,,則cosθ=()A. B.C. D.7.命題“,”的否定為()A., B.,C, D.,8.已知向量,且,則A. B.C.2 D.-29.若關于的方程在上有實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.10.函數(shù)的單調(diào)遞減區(qū)間為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值為___________.12.在△ABC中,點滿足,過點的直線與,所在直線分別交于點,,若,,,則的最小值為___________.13.定義在上的函數(shù)滿足則________.14.已知,函數(shù),若,則______,此時的最小值是______.15.已知且,函數(shù)的圖像恒過定點,若在冪函數(shù)的圖像上,則__________16.如圖,在平面直角坐標系中,矩形的頂點、分別在軸非負半軸和軸的非負半軸上滑動,頂點在第一象限內(nèi),,,設.若,則點的坐標為______;若,則的取值范圍為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,,是以為斜邊的等腰直角三角形,且.(1)證明:平面平面.(2)若四棱錐的體積為4,求四面體的表面積.18.某校高一(1)班共有學生50人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是元,經(jīng)測算和市場調(diào)查,若該班學生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成:一部分是購買純凈水的費用,另一部分是其他費用780元,其中純凈水的銷售價(元/桶)與年購買總量(桶)之間滿足如圖所示的關系.(Ⅰ)求與的函數(shù)關系;(Ⅱ)當為120時,若該班每年需要純凈水380桶,請你根據(jù)提供的信息分析一下:該班學生集體改飲桶裝純凈水與個人買飲料相比,哪一種花錢更少?19.已知.(1)求及;(2)若,,求的值.20.為適應市場需求,某公司決定從甲、乙兩種類型工業(yè)設備中選擇一種進行投資生產(chǎn),根據(jù)公司自身生產(chǎn)經(jīng)營能力和市場調(diào)研,得出生產(chǎn)經(jīng)營這兩種工業(yè)設備的有關數(shù)據(jù)如下表:類別年固定成本每臺產(chǎn)品原料費每臺產(chǎn)品售價年最多可生產(chǎn)甲設備100萬元m萬元50萬元200臺乙設備200萬元40萬元90萬元120臺假定生產(chǎn)經(jīng)營活動滿足下列條件:①年固定成本與年生產(chǎn)的設備臺數(shù)無關;②m為待定常數(shù),其值由生產(chǎn)甲種設備的原料價格決定,且m∈[30,40];③生產(chǎn)甲種設備不需要支付環(huán)保、專利等其它費用,而生產(chǎn)x臺乙種設備還需支付環(huán)保,專利等其它費用0.25x2萬元;④生產(chǎn)出來的設備都能在當年全部銷售出去(Ⅰ)若該公司選擇投資生產(chǎn)甲設備,則至少需要年生產(chǎn)a臺設備,才能保證對任意m∈[30,40],公司投資生產(chǎn)都不會賠本,求a的值;(Ⅱ)公司要獲得最大年利潤,應該從甲、乙兩種工業(yè)設備中選擇哪種設備投資生產(chǎn)?請你為該公司作出投資選擇和生產(chǎn)安排21.已知函數(shù)f(x)=sinωx-cosωx(ω>0)的最小正周期為π.(1)求函數(shù)y=f(x)圖象對稱軸方程;(2)討論函數(shù)f(x)在上的單調(diào)性.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】作出可行域,由目標函數(shù)僅在點取最大值,分,,三種情況分類討論,能求出實數(shù)的取值范圍.然后求解到直線的距離的表達式,求解最值即可詳解】解:由約束條件作出可行域,如右圖可行域,目標函數(shù)僅在點取最大值,當時,僅在上取最大值,不成立;當時,目標函數(shù)的斜率,目標函數(shù)在取不到最大值當時,目標函數(shù)的斜率,小于直線的斜率,綜上,原點到直線的距離則原點到直線的距離的取值范圍是:故選B【點睛】本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意線性規(guī)劃知識的合理運用.2、C【解析】考慮是偶函數(shù),其單調(diào)性是關于y軸對稱的,只要判斷出時的單調(diào)性,利用對稱關系即可.【詳解】,是偶函數(shù);當時,由于增函數(shù),是增函數(shù),所以是增函數(shù),是關于y軸對稱的,當時,是減函數(shù),作圖如下:欲使得,只需,兩邊取平方,得,解得;故選:C.3、B【解析】根據(jù)函數(shù)的解析式有意義,列出不等式,即可求解.【詳解】由題意,函數(shù)有意義,則滿足,解得且,所以函數(shù)的定義域為.故選:B.4、B【解析】由已知及一元二次不等式的性質(zhì)可得,討論a結(jié)合原不等式整數(shù)解的個數(shù)求的范圍,【詳解】由恰有2個整數(shù)解,即恰有2個整數(shù)解,所以,解得或,①當時,不等式解集為,因為,故2個整數(shù)解為1和2,則,即,解得;②當時,不等式解集為,因為,故2個整數(shù)解為,則,即,解得.綜上所述,實數(shù)的取值范圍為或.故選:B.5、B【解析】由均值不等式可得答案.【詳解】由,當且僅當,即時等號成立.當時,函數(shù)的函數(shù)值趨于所以函數(shù)無最大值,有最小值4故選:B6、D【解析】為銳角,故選7、B【解析】根據(jù)特稱命題的否定為全稱命題可得.【詳解】根據(jù)特稱命題的否定為全稱命題,可得命題“,”的否定為“,”故選:B.8、A【解析】由于兩個向量垂直,故有.故選:A9、A【解析】當時,令,可得出,可得出,利用函數(shù)的單調(diào)性求出函數(shù)在區(qū)間上的值域,可得出關于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【詳解】當時,令,則,可得,設,其中,任取、,則.當時,,則,即,所以,函數(shù)在上為減函數(shù);當時,,則,即,所以,函數(shù)在上為增函數(shù).所以,,,,則,故函數(shù)在上的值域為,所以,,解得.故選:A.10、A【解析】根據(jù)所給的二次函數(shù)的二次項系數(shù)大于零,得到二次函數(shù)的圖象是一個開口向上的拋物線,根據(jù)對稱軸,考查二次函數(shù)的變化區(qū)間,得到結(jié)果【詳解】解:函數(shù)的二次項的系數(shù)大于零,拋物線的開口向上,二次函數(shù)的對稱軸是,函數(shù)的單調(diào)遞減區(qū)間是故選A【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)二次函數(shù)的性質(zhì),結(jié)合給定的區(qū)間求最大值即可.【詳解】由,則開口向上且對稱軸為,又,∴,,故函數(shù)最大值為.故答案為:.12、3【解析】先利用條件找到,然后對減元,化為,利用基本不等式求最小值.【詳解】,,,三點共線,.則當且僅當,即時等號成立.故答案為:3.【點睛】(1)在向量運算中:①構造向量加、減法的三角形法則和平行四邊形法則;②樹立“基底”意識,利用基向量進行線性運算;(2)基本不等式求最值要注意應用條件:“一正二定三相等”.13、【解析】表示周期為3的函數(shù),故,故可以得出結(jié)果【詳解】解:表示周期為3的函數(shù),【點睛】本題考查了函數(shù)的周期性,解題的關鍵是要能根據(jù)函數(shù)周期性的定義得出函數(shù)的周期,從而進行解題14、①.②.【解析】直接將代入解析式即可求的值,進而可得的解析式,再分段求最小值即可求解.【詳解】因為,所以,所以,當時,對稱軸為,開口向上,此時在單調(diào)遞增,,當時,,此時時,最小值,所以最小值為,故答案為:;.15、【解析】由題意得16、①.②.【解析】分別過點作、軸的垂線,垂足點分別為、,過點分別作、軸的垂線,垂足點分別為、,設點、,根據(jù)銳角三角函數(shù)的定義可得出點、的坐標,然后利用平面向量數(shù)量積的坐標運算和二倍角的正弦公式可求出的取值范圍.【詳解】分別過點作、軸的垂線,垂足點分別為、,過點分別作、軸的垂線,垂足點分別為、,如下圖所示:則,設點、,則,,,.當時,,,則點;由上可知,,,則,因此,的取值范圍是.故答案為:;.【點睛】本題考查點的坐標的計算,同時也考查了平面向量數(shù)量積的取值范圍的求解,解題的關鍵就是將點的坐標利用三角函數(shù)表示,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)9【解析】(1)由已知可得,根據(jù)線面垂直的判定得平面,進而可得平面,由面面垂直的判定可得證.(2)根據(jù)四棱錐的體積可得.過作于,連接,可證得平面,.可求得,可求得四面體的表面積.【詳解】(1)證明:∵是以為斜邊的等腰直角三角形,∴,又,∴平面,則.又,∴平面.又平面,∴平面平面.(2)解:∵,且,∴.∴.過作于,連接,∵.∴平面,則.∵.∴.∴.故四面體的表面積為.【點睛】本題考查面面垂直的證明,四棱錐的體積和表面積的計算,關鍵在于熟記各線面平行、垂直,面面平行、垂直的判定定理,嚴格地滿足所需的條件,屬于中檔題.18、(Ⅰ);(Ⅱ)該班學生集體改飲桶裝純凈水花錢更少.【解析】(Ⅰ)根據(jù)題意設出直線方程,再代入圖示數(shù)據(jù),即可得出與的函數(shù)關系;(Ⅱ)分別求出兩種情形下的年花費費用,進行比較即可.【詳解】(Ⅰ)根據(jù)題意,可設,時,;時,,,解得,所以與的函數(shù)關系為:;(Ⅱ)該班學生購買飲料的年費用為(元),由(Ⅰ)知,當時,,故該班學生購買純凈水的年費用為:(元),比購買飲料花費少,故該班學生集體改飲桶裝純凈水花錢更少.【點睛】本題考查函數(shù)模型的選取及實際應用,屬于簡單題.19、(1),;(2).【解析】(1)應用二倍角正切公式求,由和角正切公式求.(2)根據(jù)已知角的范圍及函數(shù)值,結(jié)合同角三角函數(shù)的平方關系求,,進而應用和角正弦公式求.【小問1詳解】,.【小問2詳解】,.,..20、(Ⅰ)10(Ⅱ)詳見解析【解析】(Ⅰ)由年銷售量為a臺,按利潤的計算公式求得利潤,再由利潤大于等于0,分離參數(shù)a求解;(Ⅱ)分別寫出投資生產(chǎn)甲、乙兩種工業(yè)設備的利潤函數(shù),由函數(shù)的單調(diào)性及二次函數(shù)的性質(zhì)求函數(shù)的最大值,然后作出比較得答案【詳解】(Ⅰ)由年銷售a臺甲設備,公司年獲利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函數(shù)f(m)=在[30,40]上為增函數(shù),則f(m)max=10,∴a≥10則對任意m∈[30,40],公司投資生產(chǎn)都不會賠本,a的值為10臺;(Ⅱ)由年銷售量為x臺,按利潤的計算公式,有生產(chǎn)甲、乙兩設備的年利潤y1,y2分別為:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100為增函數(shù),又∵0≤x≤200,x∈N,∴x=200時,生產(chǎn)甲設備的最大年利潤為(50-m)×200-100=9900-200m(萬元)又y2=-0.25(x-100)2+2300,0≤x≤120,x∈N∴x=100時,生產(chǎn)乙設備的最大年利潤為2300(萬元)(y1)max-(y2)max=(9900-200m)-2300=7600-200m當30≤m<38時,7600-200m>0,當m=38時,7600-200m=0,當38<m<40時,7600-200m<0,故當30≤m<38時,投資生產(chǎn)甲設備200臺可獲最大年利潤;當m=38時,生產(chǎn)甲設備與生產(chǎn)乙設備均可獲得最大年利潤;當38<m<40時,投資生產(chǎn)乙設備100臺可獲最大年利潤【點睛】考查根據(jù)實際問題抽象函數(shù)模型的能力,并能根據(jù)模型的解決,指導實際生活中的決策問題,屬中檔題21、(1);(2)單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.【解析】(1)先化簡得函數(shù)f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函數(shù)y=f(x)圖象的對稱軸方程.(2)先求函數(shù)的單調(diào)遞增區(qū)間為(k∈Z),再給k取值,得到函數(shù)f(x)在上的單調(diào)性.【詳解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論