2025屆浙江省紹興市諸暨中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2025屆浙江省紹興市諸暨中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2025屆浙江省紹興市諸暨中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2025屆浙江省紹興市諸暨中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2025屆浙江省紹興市諸暨中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆浙江省紹興市諸暨中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列中,,,則公比()A. B.C. D.2.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.3.若,則下列不等式①;②;③;④中,正確的不等式有()A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)4.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計(jì)劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦5.已知一組數(shù)據(jù)為:2,4,6,8,這4個(gè)數(shù)的方差為()A.4 B.5C.6 D.76.若雙曲線與橢圓有公共焦點(diǎn),且離心率,則雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.7.雙曲線與橢圓的焦點(diǎn)相同,則等于()A.1 B.C.1或 D.28.已知函數(shù)(且,)的一個(gè)極值點(diǎn)為2,則的最小值為()A. B.C. D.79.已知直線的一個(gè)方向向量,平面的一個(gè)法向量,若,則()A.1 B.C.3 D.10.【山東省濰坊市二?!恳阎p曲線的離心率為,其左焦點(diǎn)為,則雙曲線的方程為()A. B.C. D.11.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或212.中國(guó)古代有一道數(shù)學(xué)題:“今有七人差等均錢(qián),甲、乙均七十七文,戊、己、庚均七十五文,問(wèn)戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七個(gè)人分錢(qián),所分得的錢(qián)數(shù)構(gòu)成等差數(shù)列,甲、乙兩人共分得77文,戊、己、庚三人共分得75文,則戊、己兩人各分得多少文錢(qián)?則下列說(shuō)法正確的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的導(dǎo)函數(shù)___________.14.某位同學(xué)參加物理、化學(xué)、政治科目的等級(jí)考,依據(jù)以往成績(jī)估算該同學(xué)在物理、化學(xué)、政治科目等級(jí)中達(dá)的概率分別為假設(shè)各門(mén)科目考試的結(jié)果互不影響,則該同學(xué)等級(jí)考至多有1門(mén)學(xué)科沒(méi)有獲得的概率為_(kāi)__________.15.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標(biāo)準(zhǔn)方程為_(kāi)_______16.設(shè),滿足約束條件,則的最大值是_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在其定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.18.(12分)數(shù)字人民幣是由央行發(fā)行的法定數(shù)字貨幣,它由指定運(yùn)營(yíng)機(jī)構(gòu)參與運(yùn)營(yíng)并向公眾兌換,與紙鈔和硬幣等價(jià).截至2021年6月30日,數(shù)字人民幣試點(diǎn)場(chǎng)景已超132萬(wàn)個(gè),覆蓋生活繳費(fèi)、餐飲服務(wù)、交通出行、購(gòu)物消費(fèi)、政務(wù)服務(wù)等領(lǐng)域.為了進(jìn)一步了解普通大眾對(duì)數(shù)字人民幣的感知以及接受情況,某機(jī)構(gòu)進(jìn)行了一次問(wèn)卷調(diào)查,結(jié)果如下:學(xué)歷小學(xué)及以下初中高中大學(xué)專(zhuān)科大學(xué)本科碩士研究生及以上不了解數(shù)字人民幣35358055646了解數(shù)字人民幣406015011014025(1)如果將高中及高中以下的學(xué)歷稱(chēng)為“低學(xué)歷”,大學(xué)專(zhuān)科及以上學(xué)歷稱(chēng)為“高學(xué)歷”,根據(jù)所給數(shù)據(jù),完成列聯(lián)表.低學(xué)歷高學(xué)歷合計(jì)不了解數(shù)字人民幣了解數(shù)字人民幣合計(jì)(2)若從低學(xué)歷的被調(diào)查者中隨機(jī)抽取2人進(jìn)行進(jìn)一步調(diào)查,求被選中的2人中至少有1人對(duì)數(shù)字人民幣不了解的概率:(3)根據(jù)列聯(lián)表,判斷是否有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān)?0.0500.0100.001k3.8416.63510.828附:.19.(12分)已知數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和20.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?21.(12分)已知的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.(1)若,,,求邊長(zhǎng)c;(2),,,求角C.22.(10分)如圖,四棱錐中,底面ABCD是邊長(zhǎng)為2的菱形,,,且,E為PD的中點(diǎn)(1)求證:;(2)求二面角的大?。唬?)在側(cè)棱PC上是否存在點(diǎn)F,使得點(diǎn)F到平面AEC的距離為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用等比中項(xiàng)的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,解得,又,,故選:C.2、A【解析】由橢圓的面積為和兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A3、C【解析】由條件,可得,利用不等式的性質(zhì)和基本不等式可判斷①、②、③、④中不等式的正誤,得出答案.【詳解】因?yàn)?,所?因此,且,且②、③不正確.所以,所以①正確,由得、均為正數(shù),所以,(由條件,所以等號(hào)不成立),所以④正確.故選:C.4、D【解析】根據(jù)等比數(shù)列的定義進(jìn)行求解即可.【詳解】因?yàn)槿ツ甑碾娏ο臑榍?,工廠計(jì)劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D5、B【解析】根據(jù)數(shù)據(jù)的平均數(shù)和方差的計(jì)算公式,準(zhǔn)確計(jì)算,即可求解.【詳解】由平均數(shù)的計(jì)算公式,可得,所以這4個(gè)數(shù)的方差為故選:B.6、A【解析】首先求出橢圓的焦點(diǎn)坐標(biāo),然后根據(jù)可得雙曲線方程中的的值,然后可得答案.【詳解】橢圓焦點(diǎn)坐標(biāo)為所以雙曲線的焦點(diǎn)在軸上,,因?yàn)?,所以,所以雙曲線的標(biāo)準(zhǔn)方程為故選:A7、A【解析】根據(jù)雙曲線方程形式確定焦點(diǎn)位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因?yàn)殡p曲線的焦點(diǎn)在軸上,所以橢圓焦點(diǎn)在軸上,依題意得解得.故選:A8、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點(diǎn)可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對(duì)求導(dǎo)得:,因函數(shù)的一個(gè)極值點(diǎn)為2,則,此時(shí),,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負(fù),2是函數(shù)的一個(gè)極值點(diǎn),則有,又,,于是得,當(dāng)且僅當(dāng),即時(shí)取“=”,所以的最小值為.故選:B9、D【解析】由向量平行充要條件代入解之即可解決.【詳解】由,可知,則有,解之得故選:D10、D【解析】分析:根據(jù)題設(shè)條件,列出方程,求出,,的值,即可求得雙曲線得標(biāo)準(zhǔn)方程詳解:∵雙曲線的離心率為,其左焦點(diǎn)為∴,∴∵∴∴雙曲線的標(biāo)準(zhǔn)方程為故選D.點(diǎn)睛:本題考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,根據(jù)題設(shè)條件求出,,的值是解決本題的關(guān)鍵.11、B【解析】利用圓心到直線距離等于半徑得到方程,解出的值.【詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B12、C【解析】設(shè)甲、乙、丙、丁、戊、己、庚所分錢(qián)數(shù)分別為,,,,,,,再根據(jù)題意列方程組可解得結(jié)果.【詳解】依題意,設(shè)甲、乙、丙、丁、戊、己、庚所分錢(qián)數(shù)分別為,,,,,,,則,解得,所以戊分得(文),己分得(文),故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)函數(shù)的乘法公式和復(fù)合函數(shù)求導(dǎo)法則進(jìn)行求解【詳解】故答案為:14、【解析】考慮3門(mén)或者2門(mén)兩種情況,計(jì)算概率得到答案.【詳解】.故答案為:.15、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心,半徑為由圓心在直線上,可設(shè)因?yàn)榕c軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標(biāo)準(zhǔn)方程為故答案為:【點(diǎn)睛】判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.16、5【解析】由題可知表示點(diǎn)與點(diǎn)連線的斜率,再畫(huà)出可行域結(jié)合圖像知知.【詳解】x,y滿足約束條件,滿足的可行域如圖:則的幾何意義是可行域內(nèi)的點(diǎn)與(﹣3,﹣2)連線的斜率,通過(guò)分析圖像得到當(dāng)經(jīng)過(guò)A時(shí),目標(biāo)函數(shù)取得最大值由可得A(﹣2,3),則的最大值是:故答案為5【點(diǎn)睛】(1)在平面直角坐標(biāo)系內(nèi)作出可行域(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見(jiàn)的類(lèi)型有截距型(型)、斜率型(型)和距離型(型)(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類(lèi)型,并結(jié)合可行域確定最優(yōu)解(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)在、上遞增,在上遞減;(2).【解析】【小問(wèn)1詳解】由題設(shè),且定義域?yàn)?,則,當(dāng)或時(shí),;當(dāng)時(shí),.所以在、上遞增,在上遞減.【小問(wèn)2詳解】由題設(shè),在上恒成立,所以在上恒成立,當(dāng)時(shí),滿足題設(shè);當(dāng)時(shí),,可得.綜上,.18、(1)列聯(lián)表答案見(jiàn)解析;(2);(3)沒(méi)有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān).【解析】(1)根據(jù)給定表中數(shù)據(jù)列出列聯(lián)表作答.(2)利用給定條件結(jié)合古典概率公式計(jì)算作答.(3)利用(1)中信息求出的觀測(cè)值,再與臨界值表比對(duì)作答.【小問(wèn)1詳解】列聯(lián)表如下:低學(xué)歷高學(xué)歷合計(jì)不了解數(shù)字人民幣150125275了解數(shù)字人民幣250275525合計(jì)400400800【小問(wèn)2詳解】由(1)知,被調(diào)查者中低學(xué)歷的有400,其中不了解數(shù)字人民幣的有150,從400人中任取2人有個(gè)基本事件,它們等可能,被選中的2人中至少有1人對(duì)數(shù)字人民幣不了解的事件A有個(gè)基本事件,所以被選中的2人中至少有1人對(duì)數(shù)字人民幣不了解的概率.【小問(wèn)3詳解】由(1)知,的觀測(cè)值為,所以沒(méi)有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān).19、(1)(2)【解析】(1)當(dāng)時(shí),由,可得,兩式相減化簡(jiǎn)可求得通項(xiàng),(2)由(1)得,然后利用裂項(xiàng)相消法可求得結(jié)果【小問(wèn)1詳解】因?yàn)椋詴r(shí),,兩式作差得,,所以時(shí),,又時(shí),,得,符合上式,所以的通項(xiàng)公式為【小問(wèn)2詳解】由(1)知,所以即數(shù)列的前n項(xiàng)和20、當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時(shí)成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價(jià)為元,由題意得:,則,表面積造價(jià),,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.21、(1)(2)或【解析】(1)根據(jù)余弦定理可求得答案;(2)根據(jù)正弦定理和三角形的內(nèi)角和可求得答案.【小問(wèn)1詳解】解:由余弦定理得:,所以.【小問(wèn)2詳解】解:由正弦定理得:得,所以或120°,又因?yàn)?,所以,所以或即?22、(1)證明見(jiàn)解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,用空間向量求解二面角;(3)設(shè)出F點(diǎn)坐標(biāo),用空間向量的點(diǎn)到平面距離公式進(jìn)行

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論