版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
海南省八校聯(lián)盟2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若拋物線的準(zhǔn)線方程是,則拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.3.某家庭準(zhǔn)備晚上在餐館吃飯,他們查看了兩個網(wǎng)站關(guān)于四家餐館的好評率,如下表所示,考慮每家餐館的總好評率,他們應(yīng)選擇()網(wǎng)站①評價人數(shù)網(wǎng)站①好評率網(wǎng)站②評價人數(shù)網(wǎng)站②好評率餐館甲100095%100085%餐館乙1000100%200080%餐館丙100090%100090%餐館丁200095%100085%A.餐館甲 B.餐館乙C.餐館丙 D.餐館丁4.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦5.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)6.已知{an}是以10為首項,-3為公差的等差數(shù)列,則當(dāng){an}的前n項和Sn,取得最大值時,n=()A.3 B.4C.5 D.67.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形8.已知且,則下列不等式恒成立的是A. B.C. D.9.已知三棱柱中,,,D點是線段上靠近A的一個三等分點,則()A. B.C. D.10.已知分別是雙曲線的左、右焦點,動點P在雙曲線的左支上,點Q為圓上一動點,則的最小值為()A.6 B.7C. D.511.已知點,若直線與線段沒有公共點,則的取值范圍是()A. B.C. D.12.已知等差數(shù)列的前項和為,,,當(dāng)取最大時的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓錐曲線有良好的光學(xué)性質(zhì),光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點(如左圖);光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出(如中圖).封閉曲線E(如右圖)是由橢圓C1:+=1和雙曲線C2:-=1在y軸右側(cè)的一部分(實線)圍成.光線從橢圓C1上一點P0出發(fā),經(jīng)過點F2,然后在曲線E內(nèi)多次反射,反射點依次為P1,P2,P3,P4,…,若P0,P4重合,則光線從P0到P4所經(jīng)過的路程為_________.14.已知雙曲線的右焦點為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點.若(O為坐標(biāo)原點),則雙曲線C的離心率為___________.15.已知函數(shù)若存在,使得成立,則實數(shù)的取值范圍是_______________16.?dāng)?shù)學(xué)中,多數(shù)方程不存在求根公式.因此求精確根非常困難,甚至不可能.從而尋找方程的近似根就顯得特別重要.例如牛頓迭代法就是求方程近似根的重要方法之一,其原理如下:假設(shè)是方程的根,選取作為的初始近似值,在點處作曲線的切線,則與軸交點的橫坐標(biāo)稱為的一次近似值,在點處作曲線的切線.則與軸交點的橫坐標(biāo)稱為的二次近似值.重復(fù)上述過程,用逐步逼近.若給定方程,取,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上頂點在直線上,點在橢圓上.(1)求橢圓C的方程;(2)點P,Q在橢圓C上,且,,點G為垂足,是否存在定圓恒經(jīng)過A,G兩點,若存在,求出圓的方程;若不存在,請說明理由.18.(12分)已知拋物線的焦點在直線上(1)求拋物線的方程(2)設(shè)直線經(jīng)過點,且與拋物線有且只有一個公共點,求直線的方程19.(12分)已知橢圓的一個焦點坐標(biāo)為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點,點P在橢圓C上,若的面積為,求點P的坐標(biāo)20.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分21.(12分)如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱BC,CD的中點(1)求證:D1F平面A1EC1;(2)求直線AC1與平面A1EC1所成角的正弦值.22.(10分)已知O為坐標(biāo)原點,點P在拋物線C:上,點F為拋物線C的焦點,記P到直線的距離為d,且.(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)若過點的直線l與拋物線C相切,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出不等式的等價形式,結(jié)合充分條件和必要條件的定義進行判斷即可【詳解】由得或,由得,因為或推不出,但能推出或成立,所以“”是“”的必要不充分條件,故選:B2、D【解析】根據(jù)拋物線的準(zhǔn)線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標(biāo)準(zhǔn)方程【詳解】準(zhǔn)線方程為,則說明拋物線的焦點在軸的正半軸則其標(biāo)準(zhǔn)方程可設(shè)為:則準(zhǔn)線方程為:解得:則拋物線的標(biāo)準(zhǔn)方程為:故選:D3、D【解析】根據(jù)給定條件求出各餐館總好評率,再比較大小作答.【詳解】餐館甲的總好評率為:,餐館乙的總好評率為:,餐館丙的好評率為:,餐館丁的好評率為:,顯然,所以餐館丁的總好評率最高.故選:D4、D【解析】根據(jù)等比數(shù)列的定義進行求解即可.【詳解】因為去年的電力消耗為千瓦,工廠計劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D5、C【解析】根據(jù)莖葉圖依次計算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.6、B【解析】由題可得當(dāng)時,,當(dāng)時,,即得.【詳解】∵{an}是以10為首項,-3為公差的等差數(shù)列,∴,故當(dāng)時,,當(dāng)時,,故時,取得最大值故選:B.7、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.8、C【解析】∵且,∴∴選C9、A【解析】在三棱柱中,,轉(zhuǎn)化為結(jié)合已知條件計算即可.【詳解】在三棱柱中,滿足,且,則,,D點是線段上靠近A的一個三等分點,則,由向量的減法運算得,.故選:A【點睛】關(guān)鍵點點睛:在三棱柱中,,由向量的減法運算得,再展開利用數(shù)量積運算.10、A【解析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當(dāng),,三點共線時,最小,最小值為,而,所以故選:A11、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過定點.因為,所以,所以要使直線與線段沒有公共點,只需:,即.所以的取值范圍是.故選:A12、B【解析】由已知條件及等差數(shù)列通項公式、前n項和公式求基本量,再根據(jù)等差數(shù)列前n項和的函數(shù)性質(zhì)判斷取最大時的值.【詳解】令公差為,則,解得,所以,當(dāng)時,取最大值.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結(jié)合橢圓、雙曲線的定義以及它們的光學(xué)性質(zhì)求得正確答案.【詳解】橢圓;雙曲線,雙曲線和橢圓的焦點重合.根據(jù)雙曲線的定義有,所以①,②,根據(jù)橢圓的定義由,所以路程.故答案為:14、【解析】過F作,利用點到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關(guān)系求解.【詳解】如圖,過F作,則E是AB中點,設(shè)漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點睛】本題考查雙曲線離心率的求解,解題的關(guān)鍵是分別表示出,,由建立關(guān)系.15、【解析】分離參數(shù)法得到能成立,構(gòu)造函數(shù),求出的最小值,即可求出實數(shù)a的取值范圍.【詳解】由得.設(shè),則存在,使得成立,即能成立,所以能成立,所以.又令,由對勾函數(shù)的性質(zhì)可得:在上,t(x)單調(diào)遞增,所以當(dāng)x=2時,t有最小值,所以實數(shù)a的取值范圍是.故答案為:【點睛】導(dǎo)數(shù)的應(yīng)用主要有:(1)利用導(dǎo)函數(shù)幾何意義求切線方程;(2)利用導(dǎo)數(shù)研究原函數(shù)的單調(diào)性,求極值(最值);(3)利用導(dǎo)數(shù)求參數(shù)的取值范圍.16、【解析】根據(jù)牛頓迭代法的知識求得.【詳解】構(gòu)造函數(shù),,切線的方程為,與軸交點的橫坐標(biāo)為.,所以切線的方程為,與軸交點的橫坐標(biāo)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線的方程,利用韋達定理及條件可得直線恒過定點,則以為直徑的圓適合題意,即得.【小問1詳解】由題設(shè)知,橢圓上頂點為,且在直線上∴,即又點在橢圓上,∴解得,∴橢圓C的方程為;【小問2詳解】設(shè),,當(dāng)直線斜率存在,設(shè)直線為:聯(lián)立方程,化簡得∴,,∵,∴又∵,∴將,代入,化簡得,即則或,①當(dāng)時,直線恒過定點與點重合,不符題意.②當(dāng)時,直線恒過定點,記為點,∵,∴以為直徑,其中點為圓心的圓恒經(jīng)過兩點,則圓方程為:;當(dāng)直線斜率不存在,設(shè)方程為,,,且,,∴,解得或(舍去),,取,以為直徑作圓,圓方程為:恒經(jīng)過兩點,綜上所述,存在定圓恒經(jīng)過兩點.【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是證明直線恒過定點,結(jié)合條件可得以為直徑的圓,適合題意即得.18、(1)(2)的方程為、、【解析】(1)求得點的坐標(biāo),由此求得,進而求得拋物線的方程.(2)結(jié)合圖象以及判別式求得直線的方程.【小問1詳解】拋物線的焦點在軸上,且開口向上,直線與軸的交點為,則,所以,拋物線的方程為.【小問2詳解】當(dāng)直線的斜率不存在時,直線與拋物線只有一個公共點.那個直線的斜率存在時,設(shè)直線的方程為,,,,解得或.所以直線的方程為或.綜上所述,的方程為、、.19、(1)(2)或或或【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)三角形的面積列方程,化簡求得點的坐標(biāo).【小問1詳解】設(shè)橢圓C的焦距為,由題意有,得,,故橢圓C的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè)點P的坐標(biāo)為,由的面積為,有,得,有,得,故點P的坐標(biāo)為或或或20、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標(biāo),結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯(lián)立方程組,解得,即,因為直線與直線垂直,所以直線的斜率為,所以過點且與直線垂直的直線方程為,即.【小問2詳解】解:因為點到直線的距離為,設(shè)所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點,且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,設(shè)直線l的的斜率為,可得直線的方程為,即,則直線與坐標(biāo)軸的交點分別為,由,解得或,所以所求直線的方程為或.若選②,設(shè)所求圓的圓心為,半徑為,因為圓與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標(biāo)為或,所以所求圓的方程為或.21、(1)證明見解析;(2).【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)利用向量法求得直線與平面所成角的正弦值.【詳解】(1)建立如圖所示空間直角坐標(biāo)系.,,設(shè)平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 花卉節(jié)慶活動合同
- 教學(xué)用品訂購合同
- 琴行鋼琴出租協(xié)議
- 代購合同的履行期限
- 黃沙子供貨合同
- 違紀(jì)保證書范本成長與反思
- 寄售合同的主要條款
- 貨物購買協(xié)議格式
- 民間簡易借款合同范例
- 電廠招標(biāo)文件樣本獲取
- 學(xué)前教育中的體驗式教學(xué)與實踐
- 新能源船舶發(fā)展現(xiàn)狀與趨勢探討
- 湖南長沙市湘一芙蓉二中學(xué)2023-2024學(xué)年數(shù)學(xué)七年級第一學(xué)期期末檢測試題含解析
- 高速鐵路牽引供電系統(tǒng)概論全套教學(xué)課件
- 科技館科普服務(wù)工作總結(jié)報告
- 大學(xué)生職業(yè)生涯規(guī)劃與就業(yè)指導(dǎo)(高等職業(yè))全套教學(xué)課件
- 國開電大法學(xué)本科《國際私法》期末考試總題庫(2024版)
- 不積跬步無以至千里課件
- 成人肺炎臨床診療指南
- 我的成長與收獲年度總結(jié)
- 《敘利亞戰(zhàn)局分析》課件
評論
0/150
提交評論