




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖南省重點中學高二數(shù)學第一學期期末質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.102.已知且,則的值為()A.3 B.4C.5 D.63.命題:“,”的否定形式為()A., B.,C., D.,4.過點且垂直于的直線方程為()A. B.C. D.5.在三棱錐中,,,,若,,則()A. B.C. D.6.已知直線過點,,則直線的方程為()A. B.C. D.7.設圓上的動點到直線的距離為,則的取值范圍是()A. B.C. D.8.直線的斜率是方程的兩根,則與的位置關系是()A.平行 B.重合C.相交但不垂直 D.垂直9.設,是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.10.函數(shù),則的值為()A B.C. D.11.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負數(shù),為真命題12.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足,則_______________.14.若滿足約束條件,則的最小值為________.15.已知,,則___________.16.在等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項和為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為0的等差數(shù)列,前項和為,首項為,且成等比數(shù)列.(1)求和;(2)設,記,求.18.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長19.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.20.(12分)人類社會正進入數(shù)字時代,網(wǎng)絡成為了必不可少的工具,智能手機也給我們的生活帶來了許多方便.但是這些方便、時尚的手機,卻也讓你的眼睛離健康越來越遠.為了了解手機對視力的影響程度,某研究小組在經(jīng)常使用手機的中學生中進行了隨機調(diào)查,并對結果進行了換算,統(tǒng)計了中學生一個月中平均每天使用手機的時間x(小時)和視力損傷指數(shù)的數(shù)據(jù)如下表:平均每天使用手機的時間x(小時)1234567視力損傷指數(shù)y25812151923(1)根據(jù)表中數(shù)據(jù),求y關于x的線性回歸方程.(2)該小組研究得知:視力的下降值t與視力損傷指數(shù)y滿足函數(shù)關系式,如果小明在一個月中平均每天使用9個小時手機,根據(jù)(1)中所建立的回歸方程估計小明視力的下降值(結果保留一位小數(shù)).參考公式及數(shù)據(jù):,..21.(12分)(1)求焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程;(2)求經(jīng)過點的拋物線的標準方程;22.(10分)已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.(Ⅰ)求橢圓的方程;(Ⅱ)求的面積的最大值;(Ⅲ)設直線,分別與軸交于點,.判斷,大小關系,并加以證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由已知設雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點,且它的兩條漸近線方程是,設雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A2、C【解析】由空間向量數(shù)量積的坐標運算求解【詳解】由已知,解得故選:C3、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結論.4、B【解析】求出直線l的斜率,再借助垂直關系的條件即可求解作答.【詳解】直線的斜率為,而所求直線垂直于直線l,則所求直線斜率為,于是有:,即,所以所求直線方程為.故選:B5、B【解析】根據(jù)空間向量的基本定理及向量的運算法則計算即可得出結果.【詳解】連接,因為,所以,因為,所以,所以,故選:B6、C【解析】根據(jù)兩點的坐標和直線的兩點式方程計算化簡即可.【詳解】由直線的兩點式方程可得,直線l的方程為,即故選:C7、C【解析】求出圓心到直線距離,再借助圓的性質(zhì)求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動點到直線的距離,有,,即,即的取值范圍是:.故選:C8、C【解析】由韋達定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進而可判斷兩直線的位置關系【詳解】設方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C9、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題10、B【解析】求出函數(shù)的導數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B11、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A12、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用來求得,進而求得正確答案.【詳解】,,是數(shù)列是首項為,公差為的等差數(shù)列,所以,所以.故答案為:14、5【解析】作出可行域,作直線,平移該直線可得最優(yōu)解【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當直線過點時取得最小值5故答案為:515、5【解析】根據(jù)空間向量的數(shù)量積運算的坐標表示運算求解即可.【詳解】解:因為,,所以.故答案為:16、【解析】求出等比數(shù)列的通項公式,可得出的通項公式,推導出數(shù)列為等差數(shù)列,利用等差數(shù)列的求和公式即可得解.【詳解】設等比數(shù)列的公比為,則,則,所以,,則,所以,數(shù)列為等差數(shù)列,故數(shù)列的前項和為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意解得等差數(shù)列的公差,代入公式即可求得和;(2)把n分為奇數(shù)和偶數(shù)兩類,分別去數(shù)列的前n項和.【小問1詳解】設等差數(shù)列公差為,由題有,即,解之得或0,又,所以,所以.【小問2詳解】,當為正奇數(shù),,當為正偶數(shù),,所以18、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標系,寫出相關點的坐標,證明線面平行只需求出平面的法向量,計算直線對應的向量與法向量的數(shù)量積為0,求二面角只需求出兩個半平面對應的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設,為平面BDE的法向量,則,即.不妨設,可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設為平面EMN的法向量,則,因為,,所以.不妨設,可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準,特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.19、(1)(2)【解析】(1)建立如圖所示的空間直角坐標系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標原點,射線方向為x,y,z軸正方向建立空間直角坐標系.當時,,所以,設平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.20、(1)(2)0.3【解析】(1)由表格數(shù)據(jù)及參考公式即可求解;(2)由(1)中線性回歸方程計算小明的視力損傷指數(shù),再將代入視力的下降值t與視力損傷指數(shù)y滿足的函數(shù)關系式即可求解.【小問1詳解】解:由表格數(shù)據(jù)得:,,,,所以線性回歸方程為;【小問2詳解】解:小明的視力損傷指數(shù),所以,估計小明視力的下降值為0.3.21、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標準方程;(2)設出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點在x軸上,設所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點在x軸上的雙曲線的方程為(2)由于點P在第三象限,所以拋物線方程可設為:或(p>0)當方程為,將點代入得16=4p,即p=4,拋物線方程為:;當方程為,將點代入得4=8p,即p=,拋物線方程為:;22、(1)(2)(3)見解析【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教練車合同范本
- 河北省邢臺市2024-2025學年高三下學期3月月考語文試題及參考答案
- 2025裝飾裝修合同書版范本
- 2025采購合同模板 電子產(chǎn)品采購合同含售后服務
- 2025年正式的非住宅小產(chǎn)權房購房合同
- 第24講 圓的相關概念及性質(zhì) 2025年中考數(shù)學一輪復習講練測(廣東專用)
- 第10講 一次函數(shù)(4考點+23題型)2025年中考數(shù)學一輪復習講練測(廣東專用)
- 2025家具購銷合同家具銷售合同
- 語言與社會知到課后答案智慧樹章節(jié)測試答案2025年春重慶大學
- 現(xiàn)代模板設計與創(chuàng)意
- GB/T 12227-2005通用閥門球墨鑄鐵件技術條件
- GA/T 832-2014道路交通安全違法行為圖像取證技術規(guī)范
- 以問題為導向的健康照顧教學課件
- 2021年湖北理工學院輔導員招聘考試題庫及答案解析
- 消防設備設施維護保養(yǎng)臺賬
- 新版《土地開發(fā)整理項目預算定額標準》講解
- 烏靈膠囊幻燈課件
- DBT29-265-2019 天津市市政基礎設施工程資料管理規(guī)程
- DB44∕T 1188-2013 電動汽車充電站安全要求
- 環(huán)網(wǎng)柜出廠檢驗規(guī)范標準
- 人教統(tǒng)編版高中語文必修下冊第八單元(單元總結)
評論
0/150
提交評論