




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省陽東廣雅學校高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.2.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.3.若向量,,則()A. B.C. D.4.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件5.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.756.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.7.在三棱錐中,,,,若,,則()A. B.C. D.8.直線的一個法向量為()A. B.C. D.9.已知,,若,則實數(shù)的值為()A. B.C. D.210.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.11.已知橢圓,則橢圓的長軸長為()A.2 B.4C. D.812.若復數(shù),則()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.桌面排列著100個乒乓球,兩個人輪流拿球裝入口袋,能拿到第100個乒乓球人為勝利者.條件是:每次拿走球的個數(shù)至少要拿1個,但最多又不能超過5個,這個游戲中,先手是有必勝策略的,請問:如果你是最先拿球的人,為了保證最后贏得這個游戲,你第一次該拿走___個球14.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點,使得經(jīng)過這三個頂點的平面與直線垂直.這三個頂點可以是________15.若不同的平面的一個法向量分別為,,則與的位置關系為___________.16.已知橢圓和雙曲線有相同的焦點和,設橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標原點).若,則的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)雙曲線的離心率為2,經(jīng)過C的焦點垂直于x軸的直線被C所截得的弦長為12.(1)求C的方程;(2)設A,B是C上兩點,線段AB的中點為,求直線AB的方程.18.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)當時,求函數(shù)f(x)的值域.19.(12分)已知橢圓C:的離心率為,點為橢圓C上一點(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個動點,且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值20.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標;(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點21.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,22.(10分)已知函數(shù).(1)當時,求的最大值和最小值;(2)說明的圖象由函數(shù)的圖象經(jīng)過怎樣的變換得到?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】應用空間向量坐標的線性運算求、的坐標,根據(jù)空間向量平行有,即可求的值.【詳解】由題設,,,∵與互相平行,∴且,則,可得.故選:A2、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A3、D【解析】由向量數(shù)量積的坐標運算求得數(shù)量積,模,結合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D4、B【解析】根據(jù)垂直關系的性質可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.5、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C6、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質,三角形的重心的向量表示,屬于中檔題.7、B【解析】根據(jù)空間向量的基本定理及向量的運算法則計算即可得出結果.【詳解】連接,因為,所以,因為,所以,所以,故選:B8、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.9、D【解析】由,然后根據(jù)向量數(shù)量積的坐標運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.10、B【解析】利用函數(shù)的奇偶性排除選項A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域為,關于原點對稱.所以函數(shù)是奇函數(shù),排除選項A,C.當時,,排除選項D,故選:B11、B【解析】根據(jù)橢圓的方程求出即得解.【詳解】解:由題得橢圓的所以橢圓的長軸長為.故選:B12、A【解析】根據(jù)復數(shù)的乘法運算即可求解.【詳解】由,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)題意,由游戲規(guī)則,結合余數(shù)的性質,分析可得答案【詳解】解:根據(jù)題意,第一次該拿走4個球,以后的取球過程中,對方取個,自己取個,由于,則自己一定可以取到第100個球.故答案為:414、①.②.點或點(填出其中一組即可)【解析】(1)以向量,,為基底分別表達出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點或點15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關系為平行.故答案為:平行16、【解析】設出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關系即可計算作答,【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側,由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得的方程.(2)結合點差法求得直線的斜率,從而求得直線的方程.【小問1詳解】因為C的離心率為2,所以,可得.將代入可得,由題設.解得,,,所以C的方程為.【小問2詳解】設,,則,.因此,即.因為線段AB的中點為,所以,,從而,于是直線AB的方程是.18、(1);(2).【解析】(1)先通過降冪公式和輔助角公式將函數(shù)化簡,進而求出周期;(2)求出的范圍,進而結合三角函數(shù)的性質求得答案.【小問1詳解】,函數(shù)最小正周期為.【小問2詳解】當時,,,∴,即函數(shù)的值域為.19、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓的離心率公式,結合代入法進行求解即可;(2)根據(jù)角平分線的性質,結合一元二次方程根與系數(shù)關系、斜率公式進行求解即可.【小問1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過點,解得,∴橢圓C的方程為;【小問2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關于直線對稱.設直線MP的斜率為k,則直線NP的斜率為∴設直線MP的方程為,直線NP的方程為設點,由消去y,得∵點在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點睛】關鍵點睛:由∠MPN的角平分線總垂直于y軸,得到MP與NP所在直線關于直線對稱是解題的關鍵.20、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標;(2)可設直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據(jù),可得,從而可求得參數(shù)的關系,即可得出結論.【小問1詳解】解:設,,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標為;【小問2詳解】證明:由題意知直線不能與軸平行,可設直線的方程為,與拋物線聯(lián)立得,消去得,設,,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當時,,所以直線過定點21、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結合關系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當平行于軸時,設過的直線為,聯(lián)立橢圓方程,令化簡得關于的二次方程,由韋達定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標準方程為:;【小問2詳解】如圖所示,當平行于軸時,恰好平行于軸,,,;當不平行于軸時,設,設過點的直線為,聯(lián)立得,令得,化簡得,設,則,又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省西安高新唐南中學2025屆高三開學摸底聯(lián)考數(shù)學試題試卷
- 湖北省武漢為明學校2025屆高三下學期開學摸底考試數(shù)學試題(文理)合卷
- 財務類培訓課件
- 2025授權代理協(xié)議合同模板
- 2025電子產(chǎn)品購銷合同協(xié)議2
- 2025住宅裝修工程合同協(xié)議書
- 2025屆湖南省衡陽四中高考考前沖刺必刷卷(二)數(shù)學試題
- 2024年低空航行系統(tǒng)白皮書修正版
- 《商鞅變法與都江堰的修建》國家的產(chǎn)生和社會變革-夏商周課件
- 江蘇省無錫市錫東高級中學2024-2025學年高一3月月考語文試題(原卷版+解析版)
- 中藥的道地藥材課件
- 《跋傅給事帖》2020年浙江嘉興中考文言文閱讀真題(含答案與翻譯)
- 幼兒園《3-6歲兒童學習與發(fā)展指南》健康領域知識試題及答案
- 國家職業(yè)技能標準 (2021年版) 嬰幼兒發(fā)展引導員
- 幼兒園小班科學:《小雞和小鴨》 PPT課件
- 伯努利方程-ppt課件
- 銀行從業(yè)資格考試題庫附參考答案(共791題精心整理)
- 年產(chǎn)20噸阿齊沙坦原料藥生產(chǎn)車間的設計和實現(xiàn)材料學專業(yè)
- 電子公章模板
- 第3章軌道車輛牽引計算
- 基于JSP的校園網(wǎng)站的設計與實現(xiàn)論文
評論
0/150
提交評論