河北省灤南縣2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第1頁
河北省灤南縣2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第2頁
河北省灤南縣2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第3頁
河北省灤南縣2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第4頁
河北省灤南縣2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省灤南縣2025屆高二數(shù)學第一學期期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)的導函數(shù)是,若,則()A. B.C. D.2.等差數(shù)列中,是的前項和,,則()A.40 B.45C.50 D.553.已知橢圓的中心為,一個焦點為,在上,若是正三角形,則的離心率為()A. B.C. D.4.已知橢圓的兩焦點分別為,,P為橢圓上一點,且,則的面積等于()A.6 B.C. D.5.在中,,則邊的長等于()A. B.C. D.26.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.47.已知函數(shù)的部分圖象與軸交于點,與軸的一個交點為,如圖所示,則下列說法錯誤的是()A. B.的最小正周期為6C.圖象關(guān)于直線對稱 D.在上單調(diào)遞減8.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設(shè)計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.9.若離散型隨機變量的所有可能取值為1,2,3,…,n,且取每一個值的概率相同,若,則n的值為()A.4 B.6C.9 D.1010.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則這個圓錐的體積為()A. B.C. D.11.為了了解1000名學生的學習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.5012.已知點,分別在雙曲線的左右兩支上,且關(guān)于原點對稱,的左焦點為,直線與的左支相交于另一點,若,且,則的離心率為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標準方程為________14.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______15.在中,,,的外接圓半徑為,則邊c的長為_____.16.與圓外切于原點,且被y軸截得的弦長為8的圓的標準方程為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知兩動圓:和:,把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,取曲線上的相異兩點、滿足:且點與點均不重合.(1)求曲線的方程;(2)證明直線恒經(jīng)過一定點,并求此定點的坐標;18.(12分)請分別確定滿足下列條件的直線方程(1)過點(1,0)且與直線x﹣2y﹣2=0垂直直線方程是(2)求與直線3x-4y+7=0平行,且在兩坐標軸上截距之和為1的直線l的方程.19.(12分)已知圓與直線(1)若,直線與圓相交與,求弦長(2)若直線與圓無公共點求的取值范圍20.(12分)已知直線:,直線:(1)若,之間的距離為3,求c的值:(2)求直線截圓C:所得弦長21.(12分)設(shè)數(shù)列滿足,數(shù)列的前項和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;(2)設(shè),若對任意正整數(shù),當時,恒成立,求實數(shù)的取值范圍.22.(10分)已知橢圓:,是坐標原點,,分別為橢圓的左、右焦點,點在橢圓上,過作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設(shè)直線:與橢圓交于,兩點,且直線,,的斜率之和為0(其中為坐標原點)①求證:直線經(jīng)過定點,并求出定點坐標:②求面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求導后,令,可求得,再令可求得結(jié)果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導數(shù)的計算,考查了求導函數(shù)值,屬于基礎(chǔ)題.2、B【解析】應用等差數(shù)列的性質(zhì)“若,則”即可求解【詳解】故選:B3、D【解析】根據(jù)是正三角形可得的坐標,代入方程后可求離心率.【詳解】不失一般性,可設(shè)橢圓的方程為:,為半焦距,為右焦點,因為且,故,故,,整理得到,故,故選:D.4、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點,∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B5、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負值舍去)故選:A6、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關(guān)系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B7、D【解析】根據(jù)函數(shù)的圖象求出,再利用函數(shù)的性質(zhì)結(jié)合周期公式逆推即可求解.【詳解】因為函數(shù)的圖象與軸交于點,所以,又,所以,A正確;因為的圖象與軸的一個交點為,即,所以,又,解得,所以,所以,求得最小正周期為,B正確;,所以是的一條對稱軸,C正確;令,解得,所以函數(shù)在,上單調(diào)遞減,D錯誤故選:D.8、A【解析】設(shè)出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設(shè)雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.9、D【解析】根據(jù)分布列即可求出【詳解】因為,所以故選:D10、D【解析】設(shè)圓錐的半徑為,母線長,根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結(jié)果.【詳解】設(shè)圓錐的半徑為,母線長,因為側(cè)面展開圖是一個半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.11、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A12、D【解析】根據(jù)雙曲線的定義及,,應用勾股定理,可得關(guān)系,即可求解.【詳解】設(shè)雙曲線的右焦點為,連接,,,如圖:根據(jù)雙曲線的對稱性及可知,四邊形為矩形.設(shè)因為,所以,又,所以,,在和中,,①,②由②化簡可得,③把③代入①可得:,所以,故選:D【點睛】本題主要考查了雙曲線的定義,雙曲線的簡單幾何性質(zhì),勾股定理,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點的位置寫出雙曲線標準方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標準方程為.故答案為:.14、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:15、【解析】由面積公式求得,結(jié)合外接圓半徑,利用正弦定理得到邊c的長.【詳解】,從而,由正弦定理得:,解得:故答案為:16、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點可知兩圓心與原點共線,再根據(jù)弦長列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因為圓的圓心為,與原點連線的斜率為,又所求圓與已知圓外切于原點,,①所以所求圓的半徑滿足,又被y軸截得的弦長為8,②由①②解得,所以圓的方程為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,.【解析】(1)設(shè)兩動圓的公共點為,則有,運用橢圓的定義,即可得到,,,進而得到的軌跡方程;(2),設(shè),,,,設(shè)出直線方程,聯(lián)立方程組,利用韋達定理法及向量的數(shù)量積的坐標表示,即可得到定點.【小問1詳解】設(shè)兩動圓的公共點為,則有由橢圓的定義可知的軌跡為橢圓,設(shè)方程為,則,,所以曲線的方程是:【小問2詳解】由題意可知:,且直線斜率存在,設(shè),,設(shè)直線:,聯(lián)立方程組,可得,,,因為,所以有,把代入整理化簡得,或舍,因為點與點均不重合,所以直線恒過定點18、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,解得m即得解(2)方法一:由題意知:可設(shè)l的方程為,求出l在x軸,y軸上的截距,由截距之和為1,解出m,代回求出直線方程;方法二:設(shè)直線方程為,由題意得,解出a,b即可.【小問1詳解】設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,可得2+m=0,解得m=﹣2所求直線方程為:2x+y﹣2=0【小問2詳解】方法一:由題意知:可設(shè)l的方程為,則l在x軸,y軸上的截距分別為.由知,.所以直線l的方程為:.方法二:顯然直線在兩坐標軸上截距不為0,則設(shè)直線方程為,由題意得解得所以直線l的方程為:.即.19、(1);(2)或.【解析】(1)求出圓心到直線的距離,再由垂徑定理求弦長;(2)由圓心到直線的距離大于半徑列式求解的范圍【詳解】解:(1)圓,圓心為,半徑,圓心到直線的距離為,弦長(2)若直線與圓無公共點,則圓心到直線的距離大于半徑解得或20、(1)或(2)【解析】(1)根據(jù)兩條平行直線的距離公式列方程,化簡求得的值.(2)利用弦長公式求得.【小問1詳解】因為兩條平行直線:與:間的距離為3,所以解得或.【小問2詳解】圓C:,圓心為,半徑為.圓心到直線的距離為,所以弦長21、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項公式后利用累加法即可求的通項公式;(2)裂項相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當時,得到,∴,當時,是以4為首項,2為公差的等差數(shù)列∴當時,當時,也滿足上式,.【小問2詳解】令,當,因此的最小值為,的最大值為對任意正整數(shù),當時,恒成立,得,即在時恒成立,,解得t<0或t>3.22、(1);(2)①證明見解析,;②.【解析】(1)根據(jù)橢圓的定義以及角平分線的性質(zhì)可得,,結(jié)合點在橢圓上,以及即可求出的值,進而可得橢圓的方程.(2)①設(shè),,聯(lián)立直線與橢圓方程,求得,,利用斜率之和等于得出關(guān)于的方程,解得即可得所過的定點,②由弦長公式求出,點到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如圖,由題意可知,由橢圓定義知,則,連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論