版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆云南省昆明市五華區(qū)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn)P是橢圓上的動(dòng)點(diǎn),,,則的最小值為()A. B.C D.2.在正方體中中,,若點(diǎn)P在側(cè)面(不含邊界)內(nèi)運(yùn)動(dòng),,且點(diǎn)P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.3.已知一個(gè)圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.4.設(shè)雙曲線:的左、右焦點(diǎn)分別為、,P為C上一點(diǎn),且,,則雙曲線的漸近線方程為()A. B.C. D.5.在正四面體中,點(diǎn)為所在平面上動(dòng)點(diǎn),若與所成角為定值,則動(dòng)點(diǎn)的軌跡是()A.圓 B.橢圓C.雙曲線 D.拋物線6.已知點(diǎn)P是圓上一點(diǎn),則點(diǎn)P到直線的距離的最大值為()A.2 B.C. D.7.拋物線有如下光學(xué)性質(zhì):平行于拋物線對(duì)稱軸的入射光線經(jīng)拋物線反射后必過(guò)拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過(guò)拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過(guò)點(diǎn)()A. B.C. D.8.在空間四邊形OABC中,,,,點(diǎn)M在線段OA上,且,N為BC中點(diǎn),則等于()A. B.C. D.9.給出下列四個(gè)說(shuō)法,其中正確的是A.命題“若,則”的否命題是“若,則”B.“”是“雙曲線的離心率大于”的充要條件C.命題“,”的否定是“,”D.命題“在中,若,則是銳角三角形”的逆否命題是假命題10.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.811.函數(shù)f(x)=-1+lnx,對(duì)?x0,f(x)≥0成立,則實(shí)數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)12.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.萬(wàn)眾矚目的北京冬奧會(huì)將于2022年2月4日正式開幕,繼2008年北京奧運(yùn)會(huì)之后,國(guó)家體育場(chǎng)(又名鳥巢)將再次承辦奧運(yùn)會(huì)開幕式.在手工課上,王老師帶領(lǐng)同學(xué)們一起制作了一個(gè)近似鳥巢的金屬模型,其俯視圖可近似看成是兩個(gè)大小不同、扁平程度相同的橢圓.已知大橢圓的長(zhǎng)軸長(zhǎng)為40cm,短軸長(zhǎng)為20cm,小橢圓的短軸長(zhǎng)為10cm,則小橢圓的長(zhǎng)軸長(zhǎng)為________cm.14.寫出一個(gè)數(shù)列的通項(xiàng)公式____________,使它同時(shí)滿足下列條件:①,②,其中是數(shù)列的前項(xiàng)和.(寫出滿足條件的一個(gè)答案即可)15.已知數(shù)列的前項(xiàng)和為,,則___________,___________.16.直線與兩坐標(biāo)軸相交于,兩點(diǎn),則線段的垂直平分線的方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)設(shè),,求證:;(3)當(dāng)時(shí),恒成立,求的取值范圍18.(12分)已知在公差不為0的等差數(shù)列中,,且構(gòu)成等比數(shù)列的前三項(xiàng)(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè)數(shù)列___________,求數(shù)列的前項(xiàng)和請(qǐng)?jiān)冖?;②;③這三個(gè)條件中選擇一個(gè),補(bǔ)充在上面的橫線上,并完成解答19.(12分)如圖,直三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,D為棱AC中點(diǎn).(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.20.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求點(diǎn)到平面的距離.21.(12分)已知拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,雙曲線E的漸近線方程為(1)求拋物線C的標(biāo)準(zhǔn)方程和雙曲線E的標(biāo)準(zhǔn)方程;(2)若O是坐標(biāo)原點(diǎn),直線與拋物線C交于A,B兩點(diǎn),求的面積22.(10分)已知命題:方程表示焦點(diǎn)在軸上的雙曲線,命題:關(guān)于的方程無(wú)實(shí)根(1)若命題為真命題,求實(shí)數(shù)的取值范圍;(2)若“”為假命題,"”為真命題,求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當(dāng)且僅當(dāng)時(shí)取等號(hào).【詳解】根據(jù)橢圓的定義可知,,即,因?yàn)?,,所以,?dāng)且僅當(dāng),時(shí)等號(hào)成立.故選:A2、A【解析】如圖建立空間直角坐標(biāo)系,先由,且點(diǎn)P到底面的距離為3,確定點(diǎn)P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標(biāo)原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,則,所以,所以,所以,因?yàn)?所以平面,因?yàn)槠矫嫫矫?,點(diǎn)P在側(cè)面(不含邊界)內(nèi)運(yùn)動(dòng),,所以,因?yàn)辄c(diǎn)P到底面的距離為3,所以,所以,因?yàn)椋援惷嬷本€與所成角的余弦值為,故選:A3、B【解析】設(shè)圓錐的母線長(zhǎng)為R,底面半徑長(zhǎng)為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計(jì)算可得,利用扇形的面積公式計(jì)算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長(zhǎng)為R,底面半徑長(zhǎng)為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B4、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【詳解】解:因?yàn)樵陔p曲線中,因?yàn)?,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.5、B【解析】把條件轉(zhuǎn)化為與圓錐的軸重合,面與圓錐的相交軌跡即為點(diǎn)的軌跡后即可求解.【詳解】以平面截圓錐面,平面位置不同,生成的相交軌跡可以為拋物線、雙曲線、橢圓、圓.令與圓錐的軸線重合,如圖所示,則圓錐母線與所成角為定值,所以面與圓錐的相交軌跡即為點(diǎn)的軌跡.根據(jù)題意,不可能垂直于平面即軌跡不可能為圓.面不可能與圓錐軸線平行,即軌跡不可能是雙曲線.可進(jìn)一步計(jì)算與平面所成角為,即時(shí),軌跡為拋物線,時(shí),軌跡為橢圓,,所以軌跡為橢圓.故選:B.【點(diǎn)睛】本題考查了平面截圓錐面所得軌跡問(wèn)題,考查了轉(zhuǎn)化化歸思想,屬于難題.6、C【解析】求出圓心到直線的距離,由這個(gè)距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點(diǎn)P到直線l的距離的最大值為.故選:C7、D【解析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項(xiàng)可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項(xiàng)可得D正確,故選:D8、B【解析】由題意結(jié)合圖形,直接利用,求出,然后即可解答.【詳解】解:因?yàn)榭臻g四邊形OABC如圖,,,,點(diǎn)M在線段OA上,且,N為BC的中點(diǎn),所以.所以.故選:B.9、D【解析】A選項(xiàng):否命題應(yīng)該對(duì)條件結(jié)論同時(shí)否定,說(shuō)法不正確;B選項(xiàng):雙曲線的離心率大于,解得,所以說(shuō)法不正確;C選項(xiàng):否定應(yīng)該是:,,所以說(shuō)法不正確;D選項(xiàng):“在中,若,則是銳角三角形”是假命題,所以其逆否命題也為假命題,所以說(shuō)法正確.【詳解】命題“若,則”的否命題是“若,則”,所以A選項(xiàng)不正確;雙曲線的離心率大于,即,解得,則“”是“雙曲線的離心率大于”的充分不必要條件,所以B選項(xiàng)不正確;命題“,”的否定是“,”,所以C選項(xiàng)不正確;命題“在中,若,則是銳角三角形”,在中,若,可能,此時(shí)三角形不是銳角三角形,所以這是一個(gè)假命題,所以其逆否命題也是假命題,所以該選項(xiàng)說(shuō)法正確.故選:D【點(diǎn)睛】此題考查四個(gè)命題關(guān)系,充分條件與必要條件,含有一個(gè)量詞的命題的否定,關(guān)鍵在于弄清邏輯關(guān)系,正確求解.10、D【解析】使用遞推公式逐個(gè)求解,直到求出即可.【詳解】因?yàn)樗?,,?故選:D11、B【解析】由導(dǎo)數(shù)求得的最小值,由最小值非負(fù)可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時(shí),,遞減,時(shí),,遞增,所以時(shí),取得極小值也是最小值,由題意,解得故選:B12、D【解析】由雙曲線的離心率為3和,求得,化簡(jiǎn),結(jié)合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當(dāng)且僅當(dāng),即時(shí),“”成立.故選:D【點(diǎn)睛】使用基本不等式解答問(wèn)題的策略:1、利用基本不等式求最值時(shí),要注意三點(diǎn):一是各項(xiàng)為正;二是尋求定值;三是考慮等號(hào)成立的條件;2、若多次使用基本不等式時(shí),容易忽視等號(hào)的條件的一致性,導(dǎo)致錯(cuò)解;3、巧用“拆”“拼”“湊”:在使用基本不等式時(shí),要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】求出大橢圓的離心率等于小橢圓的離心率,然后求解小橢圓的長(zhǎng)軸長(zhǎng)【詳解】在大橢圓中,,,則,.因?yàn)閮蓹E圓扁平程度相同,所以離心率相等,所以在小橢圓中,,結(jié)合,得,所以小橢圓的長(zhǎng)軸長(zhǎng)為20.故填:20.【點(diǎn)睛】本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,對(duì)橢圓相似則離心率相等這一基礎(chǔ)知識(shí)的考查14、(答案合理即可)【解析】當(dāng)時(shí)滿足,利用作差比較法即可證明.【詳解】解:當(dāng)時(shí)滿足條件①②,證明如下:因?yàn)?,所以;?dāng)時(shí),;當(dāng)時(shí),;綜上,.故答案為:(答案合理即可).15、①.②.【解析】第一空:由,代入已知條件,即可解得結(jié)果;第二空:由與關(guān)系可推導(dǎo)出之間的關(guān)系,再由遞推公式即可求出通項(xiàng)公式.【詳解】,可得由,可知時(shí),故時(shí)即可化為又故數(shù)列是首項(xiàng)為公比為2的等比數(shù)列,故數(shù)列的通項(xiàng)公式故答案為:①;②16、【解析】由直線的方程求出直線的斜率以及,兩點(diǎn)坐標(biāo),進(jìn)而可得線段的垂直平分線的斜率以及線段的中點(diǎn)坐標(biāo),利用點(diǎn)斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點(diǎn)坐標(biāo)為,所以線段的垂直平分線的方程為,整理得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)函數(shù)單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞)(2)證明見解析(3)[1,+∞)【解析】(1)對(duì)函數(shù)求導(dǎo)后,由導(dǎo)數(shù)的正負(fù)可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)可得,令,則可得,然后利用累加法可證得結(jié)論,(3)由,故,然后分和討論的最大值與比較可得結(jié)果【小問(wèn)1詳解】當(dāng)時(shí),(),則,由,解得;由,解得,因此函數(shù)單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞)【小問(wèn)2詳解】由(1)知,當(dāng)k=1時(shí),,故令,則,即,所以【小問(wèn)3詳解】由,故當(dāng)時(shí),因?yàn)?,所以,因此恒成立,且的根至多一個(gè),故在(0,1]上單調(diào)遞增,所以恒成立當(dāng)時(shí),令,解得當(dāng)時(shí),,則單調(diào)遞增;當(dāng)時(shí),,則單調(diào)遞減;于是,與恒成立相矛盾綜上,的取值范圍為[1,+∞)【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū),利用導(dǎo)數(shù)求函數(shù)的最值,利用導(dǎo)數(shù)證明不等式,第(2)問(wèn)解題的關(guān)鍵是利用(1)可得,從而得,然后令,得,最后累加可證得結(jié)論,考查數(shù)轉(zhuǎn)化思想,屬于較難題18、(1),(2)答案見解析【解析】(1)設(shè)的公差為,根據(jù)等比中項(xiàng)的性質(zhì)得到,即可求,從而求出的通項(xiàng)公式,所以,即可求出等比數(shù)列的公比,從而求出的通項(xiàng)公式;(2)若選①:則,利用裂項(xiàng)相消法求和即可;若選②:則,根據(jù)等比數(shù)列求和公式計(jì)算可得;若選③:則利用分組求和法求和即可;【小問(wèn)1詳解】解:設(shè)的公差為,成等比數(shù)列,,,解得或,,,即,,的公比,,【小問(wèn)2詳解】解:若選①:則,;若選②:則,;若選③:則,.19、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問(wèn)1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點(diǎn),在中,、分別為和中點(diǎn),,又因平面平面,面,面,平面【小問(wèn)2詳解】解:設(shè),以為坐標(biāo)原點(diǎn)如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因?yàn)槊媾c面的夾角余弦值為,所以,即,解得,20、(1)證明見解析;(2).【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問(wèn)題;(2)結(jié)合(1),進(jìn)而利用等體積法求得答案.【小問(wèn)1詳解】由題意,,為等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又平面.【小問(wèn)2詳解】設(shè)M到平面的距離為d,,∴.易得,取BD的中點(diǎn)N,連接,則,所以,,所以,,.即M到平面的距離為1.21、(1);(2)【解析】(1)由雙曲線的漸近線方程為,可得,繼而得到雙曲線的右焦點(diǎn)為,即為拋物線的焦點(diǎn)坐標(biāo),可得,即得解;(2)聯(lián)立直線與拋物線,可得,再由直線過(guò)拋物線的焦點(diǎn),故,三角形的高為O到直線的距離,利用點(diǎn)到直線公式,求解即可【小問(wèn)1詳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西師范高等??茖W(xué)?!渡虡I(yè)空間展示》2023-2024學(xué)年第一學(xué)期期末試卷
- 嘉興學(xué)院《設(shè)計(jì)圖學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 衡陽(yáng)幼兒師范高等??茖W(xué)?!抖碚Z(yǔ)視聽說(shuō)一》2023-2024學(xué)年第一學(xué)期期末試卷
- 淄博師范高等??茖W(xué)?!妒覂?nèi)設(shè)計(jì)原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶資源與環(huán)境保護(hù)職業(yè)學(xué)院《軟件項(xiàng)目管理與工程經(jīng)濟(jì)學(xué)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江師范大學(xué)行知學(xué)院《筆譯實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州鐵路職業(yè)技術(shù)學(xué)院《抽樣技術(shù)與應(yīng)用(實(shí)驗(yàn))》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)春信息技術(shù)職業(yè)學(xué)院《憲法學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 玉林師范學(xué)院《MATLAB語(yǔ)言及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 使用網(wǎng)格搜索進(jìn)行超參數(shù)調(diào)優(yōu)
- 深圳2024-2025學(xué)年度四年級(jí)第一學(xué)期期末數(shù)學(xué)試題
- 中考語(yǔ)文復(fù)習(xí)說(shuō)話要得體
- 《工商業(yè)儲(chǔ)能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 風(fēng)浪流耦合作用下錨泊式海上試驗(yàn)平臺(tái)的水動(dòng)力特性試驗(yàn)
- 高考英語(yǔ)語(yǔ)法專練定語(yǔ)從句含答案
- 有機(jī)農(nóng)業(yè)種植技術(shù)操作手冊(cè)
- 【教案】Unit+5+Fun+Clubs+大單元整體教學(xué)設(shè)計(jì)人教版(2024)七年級(jí)英語(yǔ)上冊(cè)
- 2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版期末測(cè)評(píng)卷(含答案)
- 《霧化吸入療法合理用藥專家共識(shí)(2024版)》解讀
- 2024年招標(biāo)代理保密協(xié)議
評(píng)論
0/150
提交評(píng)論