版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江杭州拱墅錦繡育才2024屆中考適應性考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F(xiàn),給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個2.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③3.如圖,在△ABC中,AB=AC=5,BC=6,點M為BC的中點,MN⊥AC于點N,則MN等于()A.?
B.?
C.?
D.?4.當函數(shù)y=(x-1)2-2的函數(shù)值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數(shù)5.當a>0時,下列關于冪的運算正確的是()A.a(chǎn)0=1 B.a(chǎn)﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a56.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.7.搶微信紅包成為節(jié)日期間人們最喜歡的活動之一.對某單位50名員工在春節(jié)期間所搶的紅包金額進行統(tǒng)計,并繪制成了統(tǒng)計圖.根據(jù)如圖提供的信息,紅包金額的眾數(shù)和中位數(shù)分別是()A.20,20 B.30,20 C.30,30 D.20,308.某校體育節(jié)有13名同學參加女子百米賽跑,它們預賽的成績各不相同,取前6名參加決賽.小穎已經(jīng)知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)9.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆?,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數(shù)關系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C10.如果y=++3,那么yx的算術平方根是()A.2 B.3 C.9 D.±311.“鳳鳴”文學社在學校舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設該組共有x名同學,那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=21012.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,點E,F(xiàn)分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.14.如圖,如果四邊形ABCD中,AD=BC=6,點E、F、G分別是AB、BD、AC的中點,那么△EGF面積的最大值為_____.15.因式分解:9a3b﹣ab=_____.16.如圖,直線l經(jīng)過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.17.如圖,PA,PB分別為的切線,切點分別為A、B,,則______.18.分解因式:4a2-4a+1=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數(shù)圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數(shù)圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數(shù)關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?20.(6分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產(chǎn)更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)之間的函數(shù)圖象如下圖所示.求甲組加工零件的數(shù)量y與時間x之間的函數(shù)關系式.求乙組加工零件總量a的值.21.(6分)先化簡,再求值:(+)÷,其中x=22.(8分)已知:如圖,在矩形ABCD中,點E,F(xiàn)分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.23.(8分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計圖(圖11-2),根據(jù)圖表中的信息解答下列問題:分組
分數(shù)段(分)
頻數(shù)
A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數(shù)和m的值;(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.24.(10分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據(jù)調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:(1)在這次調查中,喜歡籃球項目的同學有______人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統(tǒng)計圖補充完整.(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加校籃球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.25.(10分)如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)的圖像交于點和點,且經(jīng)過點.求反比例函數(shù)和一次函數(shù)的表達式;求當時自變量的取值范圍.26.(12分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.27.(12分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉一個角α(0°<α<90°),在旋轉過程中,設線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.2、A【解析】
解:∵乙出發(fā)時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.3、A【解析】
連接AM,根據(jù)等腰三角形三線合一的性質得到AM⊥BC,根據(jù)勾股定理求得AM的長,再根據(jù)在直角三角形的面積公式即可求得MN的長.【詳解】解:連接AM,
∵AB=AC,點M為BC中點,
∴AM⊥CM(三線合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根據(jù)勾股定理得:AM===4,
又S△AMC=MN?AC=AM?MC,∴MN==.
故選A.【點睛】綜合運用等腰三角形的三線合一,勾股定理.特別注意結論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.4、B【解析】分析:利用二次函數(shù)的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當x<1時,函數(shù)值y隨著x的增大而減?。还蔬xB.點睛:本題主要考查了二次函數(shù)的性質,解題的關鍵是熟記二次函數(shù)的性質.5、A【解析】
直接利用零指數(shù)冪的性質以及負指數(shù)冪的性質、冪的乘方運算法則分別化簡得出答案.【詳解】A選項:a0=1,正確;B選項:a﹣1=,故此選項錯誤;C選項:(﹣a)2=a2,故此選項錯誤;D選項:(a2)3=a6,故此選項錯誤;故選A.【點睛】考查了零指數(shù)冪的性質以及負指數(shù)冪的性質、冪的乘方運算,正確掌握相關運算法則是解題關鍵.6、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.7、C【解析】
根據(jù)眾數(shù)和中位數(shù)的定義,出現(xiàn)次數(shù)最多的那個數(shù)就是眾數(shù),把一組數(shù)據(jù)按照大小順序排列,中間那個數(shù)或中間兩個數(shù)的平均數(shù)叫中位數(shù).【詳解】捐款30元的人數(shù)為20人,最多,則眾數(shù)為30,中間兩個數(shù)分別為30和30,則中位數(shù)是30,故選C.【點睛】本題考查了條形統(tǒng)計圖、眾數(shù)和中位數(shù),這是基礎知識要熟練掌握.8、C【解析】13個不同的分數(shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個數(shù),故只要知道自己的分數(shù)和中位數(shù)就可以知道是否獲獎了.故選C.9、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,看懂圖形,認真分析是解題的關鍵.10、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術平方根是1.故選B.11、B【解析】
設全組共有x名同學,那么每名同學送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.12、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據(jù)相似三角形的性質可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F(xiàn)分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經(jīng)檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.14、4.1.【解析】
取CD的值中點M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,由此可得結論.【詳解】解:取CD的值中點M,連接GM,F(xiàn)M.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.【點睛】本題主要考查菱形的判定和性質,利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關鍵.15、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.16、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°17、50°【解析】
由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數(shù)求出底角的度數(shù),再利用弦切角等于夾弧所對的圓周角,可得出,由的度數(shù)即可求出的度數(shù).【詳解】解:,PB分別為的切線,
,,
又,
,
則.
故答案為:【點睛】此題考查了切線長定理,切線的性質,以及等腰三角形的性質,熟練掌握定理及性質是解本題的關鍵.18、【解析】
根據(jù)完全平方公式的特點:兩項平方項的符號相同,另一項是兩底數(shù)積的2倍,本題可用完全平方公式分解因式.【詳解】解:.故答案為.【點睛】本題考查用完全平方公式法進行因式分解,能用完全平方公式法進行因式分解的式子的特點需熟練掌握.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小時;【解析】
(1)根據(jù)圖①可得出總工作量為370件,根據(jù)圖②可得出乙完成了220件,從而可得出甲5小時完成的工作量;(2)設y甲的函數(shù)解析式為y=kx+b,將點(0,0),(5,1)代入即可得出y甲與t的函數(shù)關系式;設y乙的函數(shù)解析式為y=mx(0≤t≤2),y=cx+d(2<t≤5),將點的坐標代入即可得出函數(shù)解析式;(3)聯(lián)立y甲與改進后y乙的函數(shù)解析式即可得出答案.【詳解】(1)由圖①得,總工作量為370件,由圖②可得出乙完成了220件,故甲5時完成的工作量是1.(2)設y甲的函數(shù)解析式為y=kt(k≠0),把點(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改進前,甲乙每小時完成50件,所以乙每小時完成20件,當0≤t≤2時,可得y乙=20t;當2<t≤5時,設y=ct+d,將點(2,40),(5,220)代入可得:,解得:,故y乙=60t﹣80(2<t≤5).綜上可得:y甲=30t(0≤t≤5);y乙=.(3)由題意得:,解得:t=,故改進后﹣2=小時后乙與甲完成的工作量相等.【點睛】本題考查了一次函數(shù)的應用,解題的關鍵是能讀懂函數(shù)圖象所表示的信息,另外要熟練掌握待定系數(shù)法求函數(shù)解析式的知識.20、(1)y=60x;(2)300【解析】
(1)由題圖可知,甲組的y是x的正比例函數(shù).設甲組加工的零件數(shù)量y與時間x的函數(shù)關系式為y=kx.根據(jù)題意,得6k=360,解得k=60.所以,甲組加工的零件數(shù)量y與時間x之間的關系式為y=60x.(2)當x=2時,y=100.因為更換設備后,乙組工作效率是原來的2倍.所以,解得a=300.21、-【解析】
先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.【詳解】原式=[+]÷=[-+]÷=·=,當x=時,原式==-.【點睛】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.22、證明見解析.【解析】試題分析:根據(jù)矩形的性質得出求出根據(jù)平行四邊形的判定得出四邊形是平行四邊形,即可得出答案.試題解析:∵四邊形ABCD是矩形,∴∴∴四邊形是平行四邊形,點睛:平行四邊形的判定:有一組對邊平行且相等的四邊形是平行四邊形.23、(1)50,18;(2)中位數(shù)落在51﹣56分數(shù)段;(3).【解析】
(1)利用C分數(shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據(jù)概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學生人數(shù):50人,∴第25和第26個數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分數(shù)段;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1
A1
A2
B1
A1
(A1,A2)
(A1,B1)
A2
(A2,A1)
(A2,B1)
B1
(B1,A1)
(B1,A2)
P(一男一女).【點睛】本題考查列表法與樹狀圖法,頻數(shù)(率)分布表,扇形統(tǒng)計圖,中位數(shù).24、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總人數(shù),然后用總人數(shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總人數(shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補全條形圖;(5)畫樹狀圖可得所有可能的情況,根據(jù)樹狀圖求得2名同學恰好是1名女同學和1名男同學的結果,根據(jù)概率公式進行計算即可.【詳解】(1)調查的總人數(shù)為20÷40%=50(人),喜歡籃球項目的同學的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計全校學生中有80人喜歡籃球項目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結果數(shù),其中所抽取的2名同學恰好是1名女同學和1名男同學的結果數(shù)為12,所以所抽取的2名同學恰好是1名女同學和1名男同學的概率=.25、(1),;(2)或.【解析】
(1)把點A坐標代入可求出m的值即可得反比例函數(shù)解析式;把點A、點C代入可求出k、b的值,即可得一次函數(shù)解析式;(2)聯(lián)立一次函數(shù)和反比例函數(shù)解析式可求出點B的坐標,根據(jù)圖象,求出一次函數(shù)圖象在反比例函數(shù)圖象的上方時,x的取值范圍即可.【詳解】(1)把代入得.∴反比例函數(shù)的表達式為把和代入得,解得∴一次函數(shù)的表達式為.(2)由得∴當或時,.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,解決問題的關鍵是掌握待定系數(shù)法求函數(shù)解析式.求反比例函數(shù)與一次函數(shù)的交點坐標時,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解,則兩者有交點,若方程組無解,則兩者無交點.26、(1)相切,理由見解析;(1)1.【解析】
(1)求出OD//AC,得到OD⊥BC,根據(jù)切線的判定得出即可;(1)根據(jù)勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.27、(1);(1),E(1,1);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中毒性紅斑的臨床護理
- 產(chǎn)后手腳發(fā)麻的健康宣教
- 《教學拍牙齒片子》課件
- 腳趾長水泡的臨床護理
- 在政協(xié)委員培訓班上輔導工作的報告材料
- 《保險新人培訓》課件
- 《自動控制原理》課件第12章
- 全身脂肪代謝障礙的臨床護理
- 鼻血管瘤的健康宣教
- 過敏性肉芽腫性血管炎的健康宣教
- 《紅樓夢》十二講知到智慧樹期末考試答案題庫2024年秋安徽師范大學
- 《荷塘月色》課件25張-
- 新時代中國特色社會主義理論與實踐學習通超星期末考試答案章節(jié)答案2024年
- 尊重學術道德遵守學術規(guī)范學習通超星期末考試答案章節(jié)答案2024年
- 2024醫(yī)師定期考核臨床醫(yī)學試題
- 媒介與性別文化傳播智慧樹知到期末考試答案章節(jié)答案2024年浙江工業(yè)大學
- 小學勞動知識試題及答案
- 分布式光伏危險源辨識清單
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災害防范及救援行動與安全
- 《CRRT操作方法》課件
- 施工單位自評報告共12頁
評論
0/150
提交評論