版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省龍巖市非一級達(dá)標(biāo)校2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集合,區(qū)間,則=()A. B.C. D.2.“”是的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.若函數(shù)恰有個零點,則的取值范圍是()A. B.C. D.4.設(shè)非零向量、、滿足,,則向量、的夾角()A. B.C. D.5.已知函數(shù)是定義在R上的偶函數(shù),且,當(dāng)時,,則在區(qū)間上零點的個數(shù)為()A.2 B.3C.4 D.56.下列說法正確的是()A.向量與共線,與共線,則與也共線B.任意兩個相等的非零向量的始點與終點是一個平行四邊形的四個頂點C.向量與不共線,則與都是非零向量D.有相同起點的兩個非零向量不平行7.設(shè),,則正實數(shù),的大小關(guān)系為A. B.C. D.8.已知是定義域為的偶函數(shù),當(dāng)時,,則的解集為()A. B.C. D.9.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是A.①和② B.②和③C.③和④ D.②和④10.冪函數(shù)y=f(x)的圖象過點(4,2),則冪函數(shù)y=f(x)的圖象是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓的圓心坐標(biāo)是__________12.已知正數(shù)a,b滿足,則的最小值為______13.已知圓心為(1,1),經(jīng)過點(4,5),則圓標(biāo)準(zhǔn)方程為_____________________.14.已知函數(shù)的部分圖像如圖所示,則_______________.15.設(shè)角的頂點與坐標(biāo)原點重合,始邊與軸的非負(fù)半軸重合,若角的終邊上一點的坐標(biāo)為,則的值為__________16.已知定義在上的偶函數(shù)在上遞減,且,則不等式的解集為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(為常數(shù)且)的圖象經(jīng)過點,(1)試求的值;(2)若不等式在時恒成立,求實數(shù)的取值范圍.18.已知集合,.(1)若,求;(2)若,求的取值范圍.19.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)遞增區(qū)間20.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)圖象的對稱中心的坐標(biāo)和對稱軸方程21.在密閉培養(yǎng)環(huán)境中,某類細(xì)菌的繁殖在初期會較快,隨著單位體積內(nèi)細(xì)菌數(shù)量的增加,繁殖速度又會減慢.在一次實驗中,檢測到這類細(xì)菌在培養(yǎng)皿中的數(shù)量(單位:百萬個)與培養(yǎng)時間(單位:小時)的關(guān)系為:根據(jù)表格中的數(shù)據(jù)畫出散點圖如下:為了描述從第小時開始細(xì)菌數(shù)量隨時間變化的關(guān)系,現(xiàn)有以下三種模型供選擇:①,②,③(1)選出你認(rèn)為最符合實際的函數(shù)模型,并說明理由;(2)利用和這兩組數(shù)據(jù)求出你選擇的函數(shù)模型的解析式,并預(yù)測從第小時開始,至少再經(jīng)過多少個小時,細(xì)菌數(shù)量達(dá)到百萬個
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用交集的運算律求【詳解】∵,,∴.故選:D.2、A【解析】先看時,是否成立,即判斷充分性;再看成立時,能否推出,即判斷必要性,由此可得答案.【詳解】當(dāng)時,,即“”是的充分條件;當(dāng)時,,則或,則或,即成立,推不出一定成立,故“”不是的必要條件,故選:A.3、D【解析】由分段函數(shù)可知必須每段有且只有1個零點,寫出零點建立不等式組即可求解.【詳解】因為時至多有一個零點,單調(diào)函數(shù)至多一個零點,而函數(shù)恰有個零點,所以需滿足有1個零點,有1個零點,所以,解得,故選:D4、B【解析】根據(jù)已知條件,應(yīng)用向量數(shù)量積的運算律可得,由得,即可求出向量、的夾角.【詳解】由題意,,即,∵,∴,則,又,∴.故選:B5、C【解析】根據(jù)函數(shù)的周期性、偶函數(shù)的性質(zhì),結(jié)合零點的定義進(jìn)行求解即可.【詳解】因為,所以函數(shù)的周期為,當(dāng)時,,即,因為函數(shù)是偶函數(shù)且周期為,所以有,所以在區(qū)間上零點的個數(shù)為,故選:C6、C【解析】根據(jù)共線向量(即平行向量)定義即可求解.【詳解】解:對于A:可能是零向量,故選項A錯誤;對于B:兩個向量可能在同一條直線上,故選項B錯誤;對于C:因為與任何向量都是共線向量,所以選項C正確;對于D:平行向量可能在同一條直線上,故選項D錯誤故選:C.7、A【解析】由,知,,又根據(jù)冪函數(shù)的單調(diào)性知,,故選A8、C【解析】首先畫出函數(shù)的圖象,并當(dāng)時,,由圖象求不等式的解集.【詳解】由題意畫出函數(shù)的圖象,當(dāng)時,,解得,是偶函數(shù),時,,由圖象可知或,解得:或,所以不等式的解集是.故選:C【點睛】本題考查函數(shù)圖象的應(yīng)用,利用函數(shù)圖象解不等式,意在考查數(shù)形結(jié)合分析問題和解決問題的能力,屬于幾次題型.9、D【解析】利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.10、C【解析】設(shè)出函數(shù)的解析式,根據(jù)冪函數(shù)y=f(x)的圖象過點(4,2),構(gòu)造方程求出指數(shù)的值,再結(jié)合函數(shù)的解析式研究其性質(zhì)即可得到圖象【詳解】設(shè)冪函數(shù)的解析式為y=xa,∵冪函數(shù)y=f(x)的圖象過點(4,2),∴2=4a,解得a=∴,其定義域為[0,+∞),且是增函數(shù),當(dāng)0<x<1時,其圖象在直線y=x的上方.對照選項故選C【點睛】本題考查的知識點是函數(shù)解析式的求解及冪函數(shù)圖象及其與指數(shù)的關(guān)系,其中對于已經(jīng)知道函數(shù)類型求解析式的問題,要使用待定系數(shù)法二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)圓的標(biāo)準(zhǔn)方程,即可求得圓心坐標(biāo).【詳解】因為圓所以圓心坐標(biāo)為故答案為:【點睛】本題考查了圓的標(biāo)準(zhǔn)方程與圓心的關(guān)系,屬于基礎(chǔ)題.12、##【解析】右邊化簡可得,利用基本不等式,計算化簡即可求得結(jié)果.【詳解】,故,則,當(dāng)且僅當(dāng)時,等號成立故答案為:13、【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,代入點的坐標(biāo),求出半徑,求出圓的標(biāo)準(zhǔn)方程【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-1)2=R2,由圓經(jīng)過點(4,5)得R2=25,從而所求方程為(x-1)2+(y-1)2=25,故答案為(x-1)2+(y-1)2=25【點睛】本題主要考查圓的標(biāo)準(zhǔn)方程,利用了待定系數(shù)法,關(guān)鍵是確定圓的半徑14、【解析】首先確定函數(shù)的解析式,然后求解的值即可.【詳解】由題意可得:,當(dāng)時,,令可得:,據(jù)此有:.故答案為:.【點睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分圖象求其解析式時,A比較容易看圖得出,困難的是求待定系數(shù)ω和φ,常用如下兩種方法:(1)由ω=即可求出ω;確定φ時,若能求出離原點最近的右側(cè)圖象上升(或下降)的“零點”橫坐標(biāo)x0,則令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入點的坐標(biāo),利用一些已知點(最高點、最低點或“零點”)坐標(biāo)代入解析式,再結(jié)合圖形解出ω和φ,若對A,ω的符號或?qū)Ζ盏姆秶幸螅瑒t可用誘導(dǎo)公式變換使其符合要求.15、##0.5【解析】利用余弦函數(shù)的定義即得.【詳解】∵角的終邊上一點的坐標(biāo)為,∴.故答案為:.16、【解析】因為,而為偶函數(shù),故,故原不等式等價于,也就是,所以即,填點睛:對于偶函數(shù),有.解題時注意利用這個性質(zhì)把未知區(qū)間的性質(zhì)問題轉(zhuǎn)化為已知區(qū)間上的性質(zhì)問題去處理三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用函數(shù)圖像上的兩個點的坐標(biāo)列方程組,解方程組求得的值.(2)將原不等式分離常數(shù),利用函數(shù)的單調(diào)性,求出的取值范圍.【詳解】(1)由于函數(shù)圖像經(jīng)過,,所以,解得,所以.(2)原不等式為,即在時恒成立,而在時單調(diào)遞減,故在時有最小值為,故.所以實數(shù)的取值范圍是.【點睛】本小題主要考查待定系數(shù)法求函數(shù)的解析式,考查不等式恒成立問題的求解策略,考查函數(shù)的單調(diào)性以及最值,屬于中檔題.18、(1);(2).【解析】(1)先由得,再由并集的概念,即可得出結(jié)果;(2)根據(jù),分別討論,兩種情況,即可得出結(jié)果.【詳解】(1)若,則,又,所以;(2)因為,若,則,即;若,只需,解得,綜上,取值范圍為.【點睛】本題主要考查求集合的并集,考查由集合的包含關(guān)系求參數(shù),屬于常考題型.19、(1)(2)單調(diào)遞增區(qū)間是【解析】(1)根據(jù)公式可求函數(shù)的最小正周期;(2)利用整體法可求函數(shù)的增區(qū)間.【小問1詳解】∵,∴最小正周期【小問2詳解】令,解得,∴的單調(diào)遞增區(qū)間是20、(1)增區(qū)間為,減區(qū)間為(2)對稱中心的坐標(biāo)為;對稱軸方程為【解析】(1)將函數(shù)轉(zhuǎn)化為,利用正弦函數(shù)的單調(diào)性求解;(2)利用正弦函數(shù)的對稱性求解;【小問1詳解】解:由.令,解得,令,解得,故函數(shù)的增區(qū)間為,減區(qū)間為;【小問2詳解】令,解得,可得函數(shù)圖象的對稱中心的坐標(biāo)為,令,解得,可得函數(shù)圖象的對稱軸方程為21、(1),理由見解析;(2),至少再經(jīng)過小時,細(xì)菌數(shù)量達(dá)到百萬個【解析】(1)分析可知,所選函數(shù)必須滿足三個條件:(?。┒x域包含;(ⅱ)增函數(shù);(ⅲ)隨著自變量的增加,函數(shù)值的增長速度變?。畬Ρ热齻€
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年臨時員工派遣協(xié)議范本
- 2025年借殼上市交易合作協(xié)議
- 2025年倉儲干果堅果保管合同
- 2025年售房合同解除協(xié)議
- 2025年死因贈與合同的咨詢平臺
- 2025年食堂食材采購與社區(qū)支持農(nóng)業(yè)合同范本大全3篇
- 2025版生物質(zhì)木屑顆粒燃料買賣合同4篇
- 二零二五年度不動產(chǎn)抵押擔(dān)保物業(yè)管理合同樣本3篇
- 2025版微股東眾籌入股協(xié)議書-新能源開發(fā)項目專用3篇
- 二零二五年度科研實驗室租賃合同租金調(diào)整與設(shè)備配置補(bǔ)充協(xié)議
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學(xué)試卷
- 南安市第三次全國文物普查不可移動文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- 選煤廠安全知識培訓(xùn)課件
- 項目前期選址分析報告
- 急性肺栓塞搶救流程
- 《形象價值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎(chǔ)理論-肝
- 小學(xué)外來人員出入校門登記表
- 《土地利用規(guī)劃學(xué)》完整課件
評論
0/150
提交評論