山東省濟寧市實驗中學2025屆高二數(shù)學第一學期期末經(jīng)典試題含解析_第1頁
山東省濟寧市實驗中學2025屆高二數(shù)學第一學期期末經(jīng)典試題含解析_第2頁
山東省濟寧市實驗中學2025屆高二數(shù)學第一學期期末經(jīng)典試題含解析_第3頁
山東省濟寧市實驗中學2025屆高二數(shù)學第一學期期末經(jīng)典試題含解析_第4頁
山東省濟寧市實驗中學2025屆高二數(shù)學第一學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省濟寧市實驗中學2025屆高二數(shù)學第一學期期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角為()A.-30° B.60°C.150° D.120°2.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.3.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.4.《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學瑰寶,并稱為中國古典小說四大名著.某中學為了解本校學生閱讀四大名著的情況,隨機調(diào)查了100學生,其中閱讀過《西游記》或《紅樓夢》的學生共有90位,閱讀過《紅樓夢》的學生共有80位,閱讀過《西游記》且閱讀過《紅樓夢》的學生共有60位,則該校閱讀過《西游記》的學生人數(shù)與該校學生總數(shù)比值的估計值為A. B.C. D.5.已知函數(shù),則()A.1 B.2C.3 D.56.設為雙曲線與橢圓的公共的左右焦點,它們在第一象限內(nèi)交于點是以線段為底邊的等腰三角形,若橢圓的離心率范圍為,則雙曲線的離心率取值范圍是()A. B.C. D.7.阿波羅尼斯約公元前年證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)且的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點A,B間的距離為2,動點P與A,B距離之比滿足:,當P、A、B三點不共線時,面積的最大值是()A. B.2C. D.8.在圓上任取一點P,過點P作x軸的垂線段PD,D為垂足,當點P在圓上運動時,線段PD的中點M的軌跡記為C,則曲線C的離心率為()A. B.C. D.9.已知等比數(shù)列的前項和為,則關于的方程的解的個數(shù)為()A.0 B.1C.無數(shù)個 D.0或無數(shù)個10.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條11.如圖,在正三棱柱中,若,則C到直線的距離為()A. B.C. D.12.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.9二、填空題:本題共4小題,每小題5分,共20分。13.設,若不等式在上恒成立,則的取值范圍是______.14.已知數(shù)列滿足:,,,則______15.已知數(shù)列{an}滿足an+2=an+1-an(n∈N*),且a1=2,a2=3,則a2022的值為_________.16.已知為拋物線上的動點,,,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角、、所對的邊分別為、、,且(1)求證;、、成等差數(shù)列;(2)若,的面積為,求的周長18.(12分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(1)求證:CE//平面PAB;(2)若M是線段CE上一動點,則線段AD上是否存在點,使MN//平面PAB?說明理由19.(12分)已知命題:對任意實數(shù)都有恒成立;命題:關于的方程有實數(shù)根(1)若命題為假命題,求實數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數(shù)的取值范圍20.(12分)如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(1)求證:平面平面;(2)求點到平面的距離21.(12分)已知函數(shù).(1)若與在處有相同的切線,求實數(shù)的取值;(2)若時,方程在上有兩個不同的根,求實數(shù)的取值范圍.22.(10分)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.2、A【解析】構造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A3、B【解析】求出,進而求出,之間的關系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設,,,,解得,得,,弦的長恰等于實軸的長,,,故選:B4、C【解析】根據(jù)題先求出閱讀過西游記人數(shù),進而得解.【詳解】由題意得,閱讀過《西游記》的學生人數(shù)為90-80+60=70,則其與該校學生人數(shù)之比為70÷100=0.7.故選C【點睛】本題考查容斥原理,滲透了數(shù)據(jù)處理和數(shù)學運算素養(yǎng).采取去重法,利用轉(zhuǎn)化與化歸思想解題5、C【解析】利用導數(shù)的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C6、A【解析】設橢圓的標準方程為,根據(jù)橢圓和雙曲線的定義可得到兩圖形離心率之間的關系,再根據(jù)橢圓的離心率范圍可得雙曲線的離心率取值范圍.【詳解】設橢圓的標準方程為,,則有已知,兩式相減得,即,,因為,解得故選:A.7、C【解析】根據(jù)給定條件建立平面直角坐標系,求出點P的軌跡方程,探求點P與直線AB的最大距離即可計算作答.【詳解】依題意,以線段AB的中點為原點,直線AB為x軸建立平面直角坐標系,如圖,則,,設,因,則,化簡整理得:,因此,點P的軌跡是以點為圓心,為半徑的圓,點P不在x軸上時,與點A,B可構成三角形,當點P到直線(軸)的距離最大時,的面積最大,顯然,點P到軸的最大距離為,此時,,所以面積的最大值是故選:C8、B【解析】設,,則由題意可得,代入圓方程中化簡可得曲線C的方程,從而可求出離心率【詳解】設,,則,得,所以,因為點在圓上,所以,即,所以點的軌跡方程為,所以,則所以離心率為,故選:B9、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設等比數(shù)列的公比為,當時,,因為,所以無解,即方程的解的個數(shù)為0,當時,,所以時,方程有無數(shù)個偶數(shù)解,當時,方程無解,綜上,關于的方程的解的個數(shù)為0或無數(shù)個.故選:D.10、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B11、D【解析】取AC的中點O,建立如圖所示的空間直角坐標系,根據(jù)點到線距離的向量求法和投影的定義計算即可.【詳解】由題意知,,取AC的中點O,則,建立如圖所示的空間直角坐標系,則,所以,所以在上的投影的長度為,故點C到直線距離為:.故選:D12、B【解析】設,,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設,,,與橢圓聯(lián)立,解得:,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構造,利用導數(shù)求其最大值,結(jié)合已知不等式恒成立,即可確定的范圍.【詳解】令,則且,若得:;若得:;所以在上遞增,在上遞減,故,要使在上恒成立,即.故答案為:.14、.【解析】運用累和法,結(jié)合等差數(shù)列前項和公式進行求解即可.【詳解】因為,,所以當時,有,因此有:,即,當時,適合上式,所以,故答案為:.15、【解析】根據(jù)遞推關系求出數(shù)列的前幾項,得周期性,然后可得結(jié)論【詳解】由題意,,,,,,所以數(shù)列是周期數(shù)列,周期為6,所以故答案為:16、6【解析】根據(jù)拋物線的定義把的長轉(zhuǎn)化為到準線的距離為,進而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點,設到準線的距離為,則,而的最小值為到準線的距離,故的最小值為.故答案為:6三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用正弦定理結(jié)合兩角和的正弦公式求出的值,結(jié)合角的取值范圍可求得角的值,可求得的值,即可證得結(jié)論成立;(2)利用三角形的面積公式可求得的值,結(jié)合余弦定理可求得的值,進而可求得的周長.【小問1詳解】證明:由正弦定理及,得,所以,,所以,,,則,所以,,又,,,因此,、、成等差數(shù)列.【小問2詳解】解:,,又,,故的周長為.18、(1)證明見解析;(2)存在,理由見解析.【解析】(1)為中點,連接,由中位線、線面平行的性質(zhì)可得四邊形為平行四邊形,再根據(jù)線面平行的判定即可證結(jié)論;(2)取中點N,連接,,根據(jù)線面、面面平行的性質(zhì)定理和判斷定理即可判斷存在性【小問1詳解】如下圖,若為中點,連接,由E是PD的中點,所以且,又BC//平面PAD,面,且面面,所以,且,所以四邊形為平行四邊形,故,而面,面,則面.小問2詳解】取中點N,連接,,∵E,N分別為,的中點,∴,∵平面,平面,∴平面,線段存在點N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的動點,平面,∴平面PAB,∴線段存在點N,使得MN∥平面19、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數(shù)的范圍,則可得當命題為假命題,實數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數(shù)都有恒成立或;命題為真命題:關于的方程有實數(shù)根;(1)命題為假命題,則實數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實數(shù)的取值范圍為20、(1)證明見解析(2)【解析】(1)設與交點為,延長交的延長線于點,進而根據(jù)證明,再結(jié)合底面得,進而證明平面即可證明結(jié)論;(2)由得點到平面的距離等于點到平面的距離的,進而過作,垂足為,結(jié)合(1)得點到平面的距離等于,再在中根據(jù)等面積法求解即可.【小問1詳解】證明:設與交點為,延長交的延長線于點,因為四棱錐的底面為直角梯形,,所以,所以,因為為的中點,所以,因為所以,所以,所以,所以,又因為,所以,又因為,所以,所以,所以又因為底面,所以,因為,所以平面,因為平面,所以平面平面【小問2詳解】解:由于,所以,點到平面的距離等于點到平面的距離的,因為平面平面,平面平面故過作,垂足為,所以,平面,所以點到平面的距離等于在中,,所以,點到平面的距離等于.21、(1)(2)【解析】(1)根據(jù)導數(shù)的幾何意義求得函數(shù)在處的切線方程,再由有相同的切線這一條件即可求解;(2)先分離,再研究函數(shù)的單調(diào)性,最后運用數(shù)形結(jié)合的思想求解即可.【小問1詳解】設公切線與的圖像切于點,f'(x)=1+lnx?f由題意得:;【小問2詳解】當時,,①,①式可化為為,令令,,在上單調(diào)遞增,在上單調(diào)遞減.,當時,由題意知:22、(1)V(r)=(300r﹣4r3)(0,5)(2)見解析【解析】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論