浙江省溫州市第五十一中2025屆數(shù)學高二上期末考試模擬試題含解析_第1頁
浙江省溫州市第五十一中2025屆數(shù)學高二上期末考試模擬試題含解析_第2頁
浙江省溫州市第五十一中2025屆數(shù)學高二上期末考試模擬試題含解析_第3頁
浙江省溫州市第五十一中2025屆數(shù)學高二上期末考試模擬試題含解析_第4頁
浙江省溫州市第五十一中2025屆數(shù)學高二上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州市第五十一中2025屆數(shù)學高二上期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.經(jīng)過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.2.已知拋物線的焦點為,為拋物線上第一象限的點,若,則直線的傾斜角為()A. B.C. D.3.已知函數(shù)的圖象過點,令.記數(shù)列的前n項和為,則()A. B.C. D.4.設拋物線的焦點為F,過點F且垂直于x軸的直線與拋物線C交于A,B兩點,若,則()A1 B.2C.4 D.85.如圖,在棱長為的正方體中,為線段的中點,為線段的中點,則直線到直線的距離為()A. B.C. D.6.已知隨圓與雙曲線相同的焦點,則橢圓和雙曲線的離心,分別為()A. B.C. D.7.已知奇函數(shù),則的解集為()A. B.C. D.8.點到直線的距離是()A. B.C. D.9.已知等差數(shù)列的公差為,前項和為,等比數(shù)列的公比為,前項和為.若,則()A. B.C. D.10.設是雙曲線的兩個焦點,為坐標原點,點在上且,則的面積為()A. B.3C. D.211.曲線在處的切線的傾斜角是()A. B.C. D.12.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項和為二、填空題:本題共4小題,每小題5分,共20分。13.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關系為________14.已知函數(shù)是函數(shù)的導函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.15.已知拋物線:,若直線與拋物線C相交于M,N兩點,則_______________.16.設函數(shù)是函數(shù)的導函數(shù),已知,且,則使得成立的x的取值范圍是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.18.(12分)已知拋物線C的對稱軸是y軸,點在曲線C上.(1)求拋物線的標準方程;(2)過拋物線焦點的傾斜角為直線l與拋物線交于A、B兩點,求線段AB的長度.19.(12分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑的圓與C的準線交于A,B兩點,過A,B分別作準線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點20.(12分)已知的三個頂點的坐標分別為,,(1)求邊AC上的中線所在直線方程;(2)求的面積21.(12分)已知函數(shù)(1)當時,求的單調(diào)區(qū)間;(2)當時,證明:存在最大值,且恒成立.22.(10分)已知數(shù)列中,,的前項和為,且數(shù)列是公差為-3的等差數(shù)列.(1)求;(2)若,數(shù)列前項和為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關系,直線的斜率,直線的點斜式方程,屬于基礎題2、C【解析】設點,其中,,根據(jù)拋物線的定義求得點的坐標,即可求得直線的斜率,即可得解.【詳解】設點,其中,,則,可得,則,所以點,故,因此,直線的傾斜角為.故選:C.3、D【解析】由已知條件推導出,.由此利用裂項求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點睛】本題考查了函數(shù)的性質(zhì)、數(shù)列的“裂項求和”,考查了推理能力與計算能力,屬于中檔題4、C【解析】根據(jù)焦點弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C5、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉化成點到直線的距離,結合余弦定理即同角三角函數(shù)基本關系,求得,因此可得,進而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因為,分別為,的中點,因為,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因為,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C6、B【解析】設公共焦點為,推導出,可得出,進而可求得、的值.【詳解】設公共焦點為,則,則,即,故,即,,故選:B7、A【解析】先由求出的值,進而可得的解析式,對求導,利用基本不等式可判斷恒成立,可判斷的單調(diào)性,根據(jù)單調(diào)性脫掉,再解不等式即可.【詳解】的定義域為,因為是奇函數(shù),所以,可得:,所以,經(jīng)檢驗是奇函數(shù),符合題意,所以,因為,所以,當且僅當即時等號成立,所以在上單調(diào)遞增,由可得,即,解得:或,所以的解集為,故選:A.8、B【解析】直接使用點到直線距離公式代入即可.【詳解】由點到直線距離公式得故選:B9、D【解析】用基本量表示可得基本量的關系式,從而可得,故可得正確的選項.【詳解】若,則,而,此時,這與題設不合,故,故,故,而,故,此時不確定,故選:D.10、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計算即可.【詳解】由已知,不妨設,則,因為,所以點在以為直徑的圓上,即是以P為直角頂點的直角三角形,故,即,又,所以,解得,所以故選:B【點晴】本題考查雙曲線中焦點三角形面積的計算問題,涉及到雙曲線的定義,考查學生的數(shù)學運算能力,是一道中檔題.11、D【解析】求出函數(shù)的導數(shù),再求出并借助導數(shù)的幾何意義求解作答.【詳解】由求導得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D12、B【解析】由等差數(shù)列的通項公式判定選項A正確;利用等比數(shù)列的通項公式求出,即判定選項B錯誤;利用對數(shù)的運算和等差數(shù)列的定義判定選項C正確;利用錯位相減法求和,即判定選項D正確.【詳解】對于A:由條件可得,,即選項A正確;對于B:由條件可得,,即選項B錯誤;對于C:因為,所以,則,即數(shù)列是首項和公差均為的等差數(shù)列,即選項C正確;對于D:,設數(shù)列的前項和為,則,,上面兩式相減可得,所以,即選項D正確.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、相交【解析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關系為相交14、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構造函數(shù)的方法解不等式,即通過構造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構造函數(shù);(2)對于,可構造函數(shù)15、8【解析】直線方程代入拋物線方程,應用韋達定理根據(jù)弦長公式求弦長【詳解】設,由得,所以,,故答案為:816、【解析】構造函數(shù)利用導數(shù)研究單調(diào)性,即可得到答案;【詳解】,令,,單調(diào)遞減,且,,x的取值范圍是,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)本題首先可以設動點,然后根據(jù)題意得出,通過化簡即可得出結果;(2)本題首先可排除直線斜率不存在時情況,然后設直線方程為,通過聯(lián)立方程并化簡得出,則,,再然后根據(jù)得出,最后根據(jù)的面積為即可得出結果.【詳解】(1)設動點,因為動點到直線的距離與到點的距離之差為,所以,化簡可得,故軌跡方程為.(2)當直線斜率不存在時,其方程為,此時,與只有一個交點,不符合題意,當直線斜率存在時,設其方程為,聯(lián)立方程,化簡得,,令、,則,,因為,所以,因為的面積為,所以,解得或,故直線方程為:或.【點睛】本題考查動點的軌跡方程的求法以及拋物線與直線相交的相關問題的求解,能否根據(jù)題意列出等式是求動點的軌跡方程的關鍵,考查韋達定理的應用,在計算時要注意斜率為這種情況,考查計算能力,考查轉化與化歸思想,是中檔題.18、(1)(2)16【解析】(1)設拋物線的標準方程為:,再代入求解即可.(2)根據(jù)焦點弦公式求解即可.【小問1詳解】由題意知拋物線C的對稱軸是y軸,點在曲線C上,所以拋物線開口向上,設拋物線的標準方程為:,代入點的坐標得:,解得則拋物線的標準方程為:.【小問2詳解】焦點,則直線的方程是,設,,由得,,所以,則,故.19、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設,,將與圓P的方程聯(lián)立得到韋達定理,再寫出直線的方程即得解.【小問1詳解】解:因為拋物線C上一點,且,所以到拋物線C的準線的距離為2則,,則,所以,故拋物線C的方程為【小問2詳解】證明:由(1)知,則圓P的方程為設,,將與圓P的方程聯(lián)立,可得,則,當時,,不妨令,則,此時;當時,直線DE的斜率為,則直線DE的方程為,即,即,令且,得,直線過點;綜上,直線DE過定點20、(1)(2)【解析】(1)先求得的中點,由此求得邊AC上的中線所在直線方程.(2)結合點到直線距離公式求得的面積.【小問1詳解】的中點為,所以邊AC上的中線所在直線方程為.【小問2詳解】直線的方程為,到直線的距離為,,所以.21、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當時,定義域R,求出,從而得出單調(diào)區(qū)間,由當時,,當時,,以及極值點與2的大小關系可得出當時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論