




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第7章
光學微腔:原理集成光電子器件及設計2Outline
1.
Background
2.
Optical
Micro‐cavities:
2.1.
Standing‐wave
type:
F‐P
cavity;
2.2.
Traveling‐wave:
2.2.1.
Microring
resonator;
2.2.2.
Micro‐disk
resonator.
3Standing‐wave
&
Traveling‐wave
The
Fabry–Pérot
Cavity
~
Standing‐wave
λq
2LThe
Microring
Cavity
~
Traveling‐wave42.1.
Standing‐wave:
Fabry–Pérot
CavityL1L2hPG1
G2Charles
Fabry
(1867‐1945)Alfred
Perot(1863‐1925)F‐P
resonator
(1897)567Transmission:Reflection:Transmission
(dBm)8-30-40-10-20
FSR:
~
21
nm;
Q‐value:
~2600;
Extinction
ratio:
13dB;
1.52
1.545
1.57
1.595
1.62
Wavelength
(μm)FSR
could
be
as
large
as
200nm
by
reducing
the
cavity
length
to
about
1μm.
It
is
much
larger
than
the
MRR’s
FSR.
SOI‐nanowire
F‐P
micro‐cavity
0J.
Wang,
D.
Dai,
and
S.
He.
IPRA
conference
2010,
USA.
Bragg
gratingsQ=(6.3±0.8)x101092.2
Traveling‐wave
optical
cavity/?page_id=59silica
microtoroids10Microring
resonators&
micro‐racetrack
resonators?
(0)E1'
=
k2
(0
'1)
'E2
(0
'
)exp(?
jφ2
0'1')=
eE1k2
(0
'1)
'k12
(0')=
k12
(0')
+11Model
of
a
single
ring
resonator
with
one
waveguide
General
formula
11′Method
I
2
2′l4′1′l23′(0
(
(2'
('(
(0
(
(2
('?E20)
=
k12)E10)
+k1'0)E10)?E2'
=
k12')E10)
+k1'0)E10)?
(0)?('1'
(2'(2'
('1'
(0(('('1'
(2'('('1'
(2'(2
('1'
(0(0((E10)
(0)E20)E10)E20)E10)1?
k20)k1'0)
k1'0)k20)k12')
1?
k20)k1'0)=k1'0)k20)k12')1?
k20)k1'0)=
k12)
+0k0
0
k2′1′
0
αl2'1'2'1'
φ2'1'
=
βl2'1'0βl2'1'
=
mλResonance
wavelgnth?
(0)E1'
=
k2
(0
'1)
'E2
(0
'
)E1=
k12
(0)
+k2
(0
'1)
'k12
(0')=
k12
(0')
+=?
?∏k1'2'
?
?γ
tol
exp(?
jΦtol)=
E
?
?k1'2
∏k1'2'
?
?γ
n
exp(?
jΦn)??(0
(
(2'
('(
(0
(
(2
('?E20)
=
k12)E10)
+k1'0)E10)?E2'
=
k12')E10)
+k1'0)E10)?
(0)?('1'
(2'(2'
('1'
(0(('('1'
(2'('('1'
(2'(2
('1'
(0((E20)E10)E10)
(0)E20)E10)=
k1'0)k20)k12')
1?k20)k1'0)1?k20)k1'0)
k1'0)k20)k12')
1?k20)k1'0)1′2′2′#N
1′1′
#1
1′
1
#0#n
2′
2
The
resonator’s
response
Ring
resonator
with
N
output
ports.
Through
port
2
1
Input
port
1
2output
port
#1
output
port
#N
2′
2
1output
port
#n
(0)2'1'k?
N
(n)??
n=1
?Daoxin
Dai
and
Sailing
He.
Proposal
of
a
coupled‐microring‐based
wavelength‐selective
1×N
122'
(n)2E(0)?
(n)
n?1
(m)?
m=1=
k
=
?
jkk13121′2′#01′12′2#1121′2′#N1′21#n
2′Input
portThrough
portoutput
port
#1output
port
#noutput
port
#N(
(('1'
(0
(0
(2'
(2
(0
1
1′l4′1′
The
critical
coupling
condition
2No
power
outputs
from
the
thru
port,
i.e.,
2′
E20)
/
E10)
=
0
l23′
k20)
=
k12)
/[k12)k1'0)
?
k1'0)k12')]k2′1′(0
(2'(1)
For
coupler
#0,
one
has
(0)
(0)
1'2
12'('1'k20)
=
1?k
2
k12)
=
k1'0)
=
1?k
2Finally
the
critical
coupling
condition
becomes14
Special
case
I:
all
passed
filter
(n=1)
The
critical
coupling
condition
becomes0
(0)2'1'0kαl2'1'exp(?
jφ2'1')=
e
1
1′l4′1′
2
2′l23′k2′1′and2
(0)2'1'k=
1?kα<0α>0
λPowerFSR=?
?∏k1'2'
?
?γ
tol
exp(?
jΦtol)E1=
k12
+=
E
?
?k1'2
∏k1'2'
?
?γ
n
exp(?
jΦn)??15Special
case
II:
add‐drop
filter
(n=2)
(0)2'1'k?
N
(n)??
n=1
?2'E('1'
(2'(2
('1'
(0(0)(E20)
(0)k1'0)k20)k12')1?k20)k1'0)(0)?
(n)
n?1
(m)?
m=1
1
1′
l4′1′
(n)2
2
2′
l23′k2′1′16The
resonator’s
response
Key
features:
FSR
(free
spectral
response).
3dB‐bandwidth,
Q
factor
=
λ/BW3dB.
Resonance
wavelengths.
17Model
of
a
single
ring
resonator
with
one
waveguide
Method
IIα
is
the
loss
coefficient
of
the
ring
(zero
loss:
α
=
1).
θ
=
ωL/c,
L
=
2πr,
c
=
c0/neff,
ω
=
kc0,
k
=
2π/λThe
transmission
power
Pt1
in
the
output
waveguide,The
circulating
power
Pi2
in
the
ring
is
given
bywhere
t
=
|t|
exp
(j?t),
|t|
representing
the
coupling
losses
and
?tthe
phase
of
the
coupler.On
resonance,
(θ+?t)
=
2πm,
where
m
is
an
integer
critical
coupling:
α=|t|
1819The
spectral
response
of
an
all‐passed
filter20Model
of
a
basic
add–drop
single
ring
resonator
filterAt
resonance:Critical
coupling:21Spectral
response
of
an
add–drop
ring
resonator
filter22Some
important
parameters
FSR
(free
spectral
range):
neffL=mλn’effL=(m‐1)λ’
(neff+
Δλ
(?neff/
?
λ))L=(m‐1)(λ+Δλ)
ΔλFSR=
λ/[m
(ng/neff)]
Group
index233dB
bandwidth
(full‐width
at
half‐maximum)
|Et2|2=0.5Pt2_resonance_When
α=1,
t1=t2
(symmetrical),
one
has
Finess
Q
valueThe
intensity
enhancement
or
buildup
factor
B:
On‐resonanceLossless,
κ1=κ2
B=Qλ/(πneffL)
2425An
example
to
show
the
field
enhancement
in
the
resonator:B
~
105
Q
~1×108,
D
~
50μm,
Vm~
600
μm3Pin
=
1
mWExperimental
data1
mWPcav~
100
W,
Icav
~
2.5
GW/cm2,τ
~
100
ns,
#
of
round
trip
~
2×105.
>
100
W26Serially
Coupled
Double
Ring
Resonatorwhere
α1,2
represent
the
half
round
trip
loss
coefficients
of
ring
resonator
one
and
two
respectively.27Assuming
a
coupler
without
losses
and
symmetric
coupling
behavior,
setting
t
=
t?
andκ=?κ?,
one
hasIn
order
to
achieve
a
double
ring
resonator
filter
with
maximally
flat
response
for
the
drop
port,
one
should
make
28An
exampleR1=R2=5.08um,
n1=3.45,
n2=1.456,
k1=0.18,
k2=0.01~0.09.
k1=0.18,
k2=0.0164729Parallel
Coupled
Double
Ring
ResonatorSimplifiedRegular
model:30Finally31Parallel
Coupled
Double
Ring
Resonator
with
Coupling
Between
the
Two
Ring
ResonatorsThe
distance
Λ
between
the
rings
does
not
have
an
influence
on
the
transfer
characteristic.For
lossless
couplers
with
κ1=κ3=
κ:Chremmos
and
Uzunoglu.
PTL.
17(10):
2110‐2112
,
200532In
order
to
realize
a
maximally
flat
response
with
a
single
peak,
the
coupling
coefficients
have
to
obey
the
following
equation:The
corresponding
FWHM
is
given
by33Modeling
cascaded‐ring
resonators:
Method
IIIwhere34Numerical
simulation
for
microring
resonators:
FDTD
methodFDTD
simulation/en/fdtd/user_guide_cw_norm_ring.html/rsoft/application‐galle
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度寵物照料保姆雇傭合同協(xié)議書
- 商鋪轉(zhuǎn)讓服務合同
- 2025年度撫養(yǎng)權變更與財產(chǎn)分割調(diào)解合同模板
- 2025年度個人挖機租賃與施工驗收服務合同
- 2025年度房東轉(zhuǎn)租合同-科技園區(qū)房產(chǎn)租賃
- 2025年度醫(yī)院醫(yī)護人員崗位調(diào)整與勞動合同
- 2025年度互聯(lián)網(wǎng)企業(yè)期權投資合作協(xié)議
- 2025年度影視作品宣傳策劃代理合同
- 二零二五年度數(shù)字經(jīng)濟領域聘用業(yè)務經(jīng)理專屬合同
- 2025年度原油出口退稅及關稅優(yōu)惠合同
- 非遺傳統(tǒng)文化課件
- 橋梁施工常見問題及預防控制要點(PPT,46)
- 中俄文一般貿(mào)易合同范本
- 知情同意書核查要點課件
- 廣東省深圳市2021-2022學年高二下學期期末考試 語文 Word版含解析
- 專項施工方案專家論證意見回復表
- 第三章-農(nóng)村公共管理組織課件
- 《醫(yī)古文》教學全套課件580頁
- 水電廠計算機監(jiān)控系統(tǒng)改造技術要求
- 勝利油田壓驅(qū)技術工藝研究進展及下步工作方向
- 依戀理論之母嬰依戀
評論
0/150
提交評論