黑龍江省哈爾濱市呼蘭一中、阿城二中、賓縣三中、尚志五中四校2025屆數(shù)學高一上期末綜合測試模擬試題含解析_第1頁
黑龍江省哈爾濱市呼蘭一中、阿城二中、賓縣三中、尚志五中四校2025屆數(shù)學高一上期末綜合測試模擬試題含解析_第2頁
黑龍江省哈爾濱市呼蘭一中、阿城二中、賓縣三中、尚志五中四校2025屆數(shù)學高一上期末綜合測試模擬試題含解析_第3頁
黑龍江省哈爾濱市呼蘭一中、阿城二中、賓縣三中、尚志五中四校2025屆數(shù)學高一上期末綜合測試模擬試題含解析_第4頁
黑龍江省哈爾濱市呼蘭一中、阿城二中、賓縣三中、尚志五中四校2025屆數(shù)學高一上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱市呼蘭一中、阿城二中、賓縣三中、尚志五中四校2025屆數(shù)學高一上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集合,為自然數(shù)集,則下列結論正確的是()A. B.C. D.2.已知函數(shù),則函數(shù)()A.有最小值 B.有最大值C.有最大值 D.沒有最值3.如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,已知△A'DE是△ADE繞DE旋轉過程中的一個圖形(A'不與A,F重合),則下列命題中正確的是()①動點A'在平面ABC上的射影在線段AF上;②BC∥平面A'DE;③三棱錐A'-FED的體積有最大值.A.① B.①②C.①②③ D.②③4.設命題,使得,則命題為的否定為()A., B.,使得C., D.,使得5.已知,,若對任意,或,則的取值范圍是A. B.C. D.6.下表是某次測量中兩個變量的一組數(shù)據(jù),若將表示為關于的函數(shù),則最可能的函數(shù)模型是234567890.631.011.261.461.631.771.891.99A.一次函數(shù)模型 B.二次函數(shù)模型C.指數(shù)函數(shù)模型 D.對數(shù)函數(shù)模型7.設函數(shù)y=,當x>0時,則y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值88.已知函數(shù)的圖象是一條連續(xù)不斷的曲線,且有如下對應函數(shù)值表:12456123.13615.55210.88-52.488-232.064在以下區(qū)間中,一定有零點的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)9.已知函數(shù),,若恰有2個零點,則實數(shù)a的取值范圍是()A. B.C. D.10.已知函數(shù)f(x)=a+log2(x2+a)(a>0)的最小值為8,則實數(shù)a的取值屬于以下哪個范圍()A.(5,6) B.(7,8)C.(8,9) D.(9,10)二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)和函數(shù)的圖像相交于三點,則的面積為__________.12.在空間直角坐標系中,設,,且中點為,是坐標原點,則__________13.函數(shù)最小值為______14.已知函數(shù)的零點為,不等式的最小整數(shù)解為,則__________15.,,則的值為__________.16.已知,α為銳角,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),該函數(shù)圖象一條對稱軸與其相鄰的一個對稱中心的距離為(1)求函數(shù)的對稱軸和對稱中心;(2)求在上的單調遞增區(qū)間18.蘆薈是一種經(jīng)濟價值很高的觀賞、食用植物,不僅可美化居室、凈化空氣,又可美容保健,因此深受人們歡迎,在國內占有很大的市場.某人準備進軍蘆薈市場,栽培蘆薈,為了了解行情,進行市場調研,從4月1日起,蘆薈的種植成本Q(單位:元/10kg)與上市時間t(單位:天)的數(shù)據(jù)情況如表:t50110250Q150108150(1)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個最能反映蘆薈種植成本Q與上市時間t的變化關系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并說明理由;(2)利用你選擇的函數(shù),求蘆薈種植成本最低時的上市天數(shù)及最低種植成本.19.在三棱錐中,,,O是線段AC的中點,M是線段BC的中點.(1)求證:PO⊥平面ABC;(2)求直線PM與平面PBO所成的角的正弦值.20.已知扇形的周長為30(1)若該扇形的半徑為10,求該扇形的圓心角,弧長及面積;(2)求該扇形面積的最大值及此時扇形的半徑.21.某興趣小組在研究性學習活動中,通過對某商店一種商品銷售情況的調查發(fā)現(xiàn):該商品在過去的一個月內(以天計)的日銷售價格(元)與時間(天)的函數(shù)關系近似滿足(為常數(shù)).該商品的日銷售量(個)與時間(天)部分數(shù)據(jù)如下表所示:(天)(個)已知第天該商品日銷售收入為元.(1)求出該函數(shù)和的解析式;(2)求該商品的日銷售收入(元)的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題設可得,結合集合與集合、元素與集合的關系判斷各選項的正誤即可.【詳解】由題設,,而為自然數(shù)集,則,且,所以,,故A、B、D錯誤,C正確.故選:C2、B【解析】換元法后用基本不等式進行求解.【詳解】令,則,因為,,故,當且僅當,即時等號成立,故函數(shù)有最大值,由對勾函數(shù)的性質可得函數(shù),即有最小值.故選:B3、C【解析】【思路點撥】注意折疊前DE⊥AF,折疊后其位置關系沒有改變.解:①中由已知可得平面A'FG⊥平面ABC∴點A'在平面ABC上的射影在線段AF上.②BC∥DE,BC?平面A'DE,DE?平面A'DE,∴BC∥平面A'DE.③當平面A'DE⊥平面ABC時,三棱錐A'-FED的體積達到最大.4、C【解析】根據(jù)給定條件由含有一個量詞的命題的否定方法直接寫出p的否定判斷作答.【詳解】依題意,命題是存在量詞命題,其否定是全稱量詞命題,所以命題的否定是:,.故選:C5、C【解析】先判斷函數(shù)g(x)的取值范圍,然后根據(jù)或成立求得m的取值范圍.【詳解】∵g(x)=﹣2,當x<時,恒成立,當x≥時,g(x)≥0,又∵?x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立,即m(x﹣2m)(x+m+3)<0在x≥時恒成立,則二次函數(shù)y=m(x﹣2m)(x+m+3)圖象開口只能向下,且與x軸交點都在(,0)的左側,∴,即,解得<m<0,∴實數(shù)m的取值范圍是:(,0)故選C【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的圖象和性質,根據(jù)條件確定f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立是解決本題的關鍵,綜合性較強,難度較大6、D【解析】對于,由于均勻增加,而值不是均勻遞增,不是一次函數(shù)模型;對于,由于該函數(shù)是單調遞增,不是二次函數(shù)模型;對于,過不是指數(shù)函數(shù)模型,故選D.7、B【解析】由均值不等式可得答案.【詳解】由,當且僅當,即時等號成立.當時,函數(shù)的函數(shù)值趨于所以函數(shù)無最大值,有最小值4故選:B8、C【解析】由表格數(shù)據(jù),結合零點存在定理判斷零點所在區(qū)間.【詳解】∵∴,,,,又函數(shù)的圖象是一條連續(xù)不斷的曲線,由函數(shù)零點存在定理可得在區(qū)間上一定有零點故選:C.9、B【解析】利用數(shù)形結合的方法,作出函數(shù)的圖象,簡單判斷即可.【詳解】依題意,函數(shù)的圖象與直線有兩個交點,作出函數(shù)圖象如下圖所示,由圖可知,要使函數(shù)的圖象與直線有兩個交點,則,即.故選:B.【點睛】本題考查函數(shù)零點問題,掌握三種等價形式:函數(shù)零點個數(shù)等價于方程根的個數(shù)等價于兩個函數(shù)圖象交點個數(shù),屬基礎題.10、A【解析】根復合函數(shù)的單調性,得到函數(shù)f(x)的單調性,求解函數(shù)的最小值f(x)min=8,構造新函數(shù)g(a)=a+log2a-8,利用零點的存在定理,即可求解.【詳解】由題意,根復合函數(shù)的單調性,可得函數(shù)f(x)在[0,+∞)上是增函數(shù),在(-∞,0)上遞減,所以函數(shù)f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,則g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函數(shù),所以實數(shù)a所在的區(qū)間為(5,6)【點睛】本題主要考查了函數(shù)的單調性的應用,以及零點的存在定理的應用,其中解答中根據(jù)復合函數(shù)的單調性,求得函數(shù)的最小值,構造新函數(shù),利用零點的存在定理求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】解出三點坐標,即可求得三角形面積.【詳解】由題:,,所以,,所以,.故答案為:12、【解析】,故13、【解析】根據(jù),并結合基本不等式“1”的用法求解即可.【詳解】解:因為,所以,當且僅當時,等號成立故函數(shù)的最小值為.故答案為:14、8【解析】利用單調性和零點存在定理可知,由此確定的范圍,進而得到.【詳解】函數(shù)為上的增函數(shù),,,函數(shù)的零點滿足,,的最小整數(shù)解故答案為:.15、#0.3【解析】利用“1”的代換,構造齊次式方程,再代入求解.【詳解】,故答案為:16、【解析】由同角三角函數(shù)關系和誘導公式可得結果.【詳解】因為,且為銳角,則,所以,故.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)對稱軸為,;,(2)和【解析】(1)先把化簡成一個角的三角函數(shù)形式,再整體代換法去求的對稱軸和對稱中心;(2)整體代換法去求在上的單調遞增區(qū)間即可.【小問1詳解】由題可知,由對稱軸與其相鄰的一個對稱中心的距離為,得,解得,所以令,即,所以的對稱軸為,;令,即,所以的對稱中心為,【小問2詳解】令∵,∴,由圖可知,只需滿足或,即或,∴在上的單調遞增區(qū)間是和18、(1)選用二次函數(shù)Q=at2+bt+c進行描述,理由見解析;(2)150(天),100(元/10kg).【解析】(1)由所提供的數(shù)據(jù)和函數(shù)的單調性得出應選函數(shù),再代入數(shù)據(jù)可得蘆薈種植成本Q與上市時間t的變化關系的函數(shù).(2)由二次函數(shù)的性質可以得出蘆薈種植成本最低成本.【詳解】(1)由所提供的數(shù)據(jù)可知,刻畫蘆薈種植成本Q與上市時間t的變化關系的函數(shù)不可能是常數(shù)函數(shù),若用函數(shù)Q=at+b,Q=a·bt,Q=alogbt中的任意一個來反映時都應有a≠0,且上述三個函數(shù)均為單調函數(shù),這與表格所提供的數(shù)據(jù)不符合,所以應選用二次函數(shù)Q=at2+bt+c進行描述.將表格所提供的三組數(shù)據(jù)分別代入函數(shù)Q=at2+bt+c,可得:,解得.所以,刻畫蘆薈種植成本Q與上市時間t變化關系的函數(shù).(2)當時,蘆薈種植成本最低為(元/10kg).【點睛】本題考查求回歸方程,以及回歸方程的應用,屬于中檔題.19、(1)證明見解析;(2)【解析】(1)利用勾股定理得出線線垂直,結合等邊三角形的特點,再次利用勾股定理得出線線垂直,進而得出線面垂直;(2)根據(jù)線面垂直面,得出線和面的夾角,從而得出線面角的正弦值.【詳解】(1)由,有,從而有,且又是邊長等于的等邊三角形,.又,從而有又平面.(2)過點作交于點,連.由(1)知平面,得,又平面是直線與平面所成的角.由(1),從而為線段的中點,,,所以直線與平面所成的角的正弦值為20、(1),,;(2),.【解析】(1)利用弧長公式,扇形面積公式即得;(2)由題可得,然后利用基本不等式即求.【小問1詳解】由題知扇形的半徑,扇形的周長為30,∴,∴,,.【小問2詳解】設扇形的圓心角,弧長,半徑為,則,∴,∴當且僅當,即取等號,所以該扇形面積的最大值為,此時扇形的半徑為.21、(1),(2)最小值為元【解析】(1)利用可求得的值,利用表格中的數(shù)據(jù)可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論