版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市醴陵市四中2025屆高二上數(shù)學(xué)期末預(yù)測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),n的最大值是()A.8 B.9C.10 D.112.已知正方體中,分別為棱的中點(diǎn),則直線與所成角的余弦值為()A. B.C. D.3.對于函數(shù),下列說法正確的是()A.的單調(diào)減區(qū)間為B.設(shè),若對,使得成立,則C.當(dāng)時(shí),D.若方程有4個(gè)不等的實(shí)根,則4.已知向量,,則以下說法不正確的是()A. B.C. D.5.?dāng)?shù)列的通項(xiàng)公式是()A. B.C. D.6.如圖,平行六面體中,與的交點(diǎn)為,設(shè),則選項(xiàng)中與向量相等的是()A. B.C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.直線的方向向量為()A. B.C. D.9.已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的直線與圓相切于點(diǎn),交雙曲線的右支于點(diǎn),且點(diǎn)是線段的中點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.10.已知橢圓與圓在第二象限的交點(diǎn)是點(diǎn),是橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),到直線的距離是,則橢圓的離心率是()A. B.C. D.11.已知等比數(shù)列的首項(xiàng)為1,公比為2,則=()A. B.C. D.12.某中學(xué)舉行黨史學(xué)習(xí)教育知識(shí)競賽,甲隊(duì)有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時(shí)現(xiàn)場從中隨機(jī)抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的頂點(diǎn)A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點(diǎn)C的坐標(biāo);(2)直線BC的方程;14.已知關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是___________.15.某工廠年前加緊手套生產(chǎn),設(shè)該工廠連續(xù)5天生產(chǎn)的手套數(shù)依次為,,,,(單位:萬只),若這組數(shù)據(jù),,,,的方差為4,且,,,,的平均數(shù)為8,則該工廠這5天平均每天生產(chǎn)手套______萬只16.若,,,四點(diǎn)中恰有三點(diǎn)在橢圓上,則橢圓C的方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點(diǎn).(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.18.(12分)設(shè)數(shù)列的前項(xiàng)和為,,且,,(1)若(i)求;(ii)求證數(shù)列成等差數(shù)列(2)若數(shù)列為遞增數(shù)列,且,試求滿足條件的所有正整數(shù)的值19.(12分)在中,a,b,c分別是內(nèi)角A,B,C的對邊,滿足.(1)求A;(2)若,求面積的最大值.20.(12分)已知橢圓的離心率,左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,過的直線交橢圓于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求的面積的最大值.21.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知等比數(shù)列的首項(xiàng),公比,在中每相鄰兩項(xiàng)之間都插入3個(gè)正數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個(gè)新的等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前n項(xiàng)的乘積為,試問:是否有最大值?如果是,請求出此時(shí)n以及最大值;若不是,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先求出數(shù)列和的通項(xiàng)公式,然后利用分組求和求出,再對進(jìn)行賦值即可求解.【詳解】解:因?yàn)閿?shù)列是以1為首項(xiàng),2為公差的等差數(shù)列所以因?yàn)槭且?為首項(xiàng),2為公比的等比數(shù)列所以由得:當(dāng)時(shí),即當(dāng)時(shí),當(dāng)時(shí),所以n的最大值是.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.2、D【解析】以D為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,B,D1點(diǎn)的坐標(biāo),利用直線夾角的向量求法求解【詳解】如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選D【點(diǎn)睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題3、B【解析】函數(shù),,,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設(shè)函數(shù)的值域?yàn)?,函?shù),的值域?yàn)椋魧?,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個(gè)不等的實(shí)根,則,且時(shí),有2個(gè)不等的實(shí)根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時(shí),,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設(shè)函數(shù)的值域?yàn)椋瘮?shù),的值域?yàn)椋瑢?,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當(dāng)時(shí),,即,因此C不正確;D.方程有4個(gè)不等的實(shí)根,則,且時(shí),有2個(gè)不等的實(shí)根,結(jié)合圖象可知,因此D不正確故選:B4、C【解析】可根據(jù)已知的和的坐標(biāo),通過計(jì)算向量數(shù)量積、向量的模,即可做出判斷.【詳解】因?yàn)橄蛄浚?,所以,故,所以選項(xiàng)A正確;,,所以,故選項(xiàng)B正確;,所以,故選項(xiàng)C錯(cuò)誤;,所以,,故,所以選項(xiàng)D正確.故選:C.5、C【解析】根據(jù)數(shù)列前幾項(xiàng),歸納猜想出數(shù)列的通項(xiàng)公式.【詳解】依題意,數(shù)列的前幾項(xiàng)為:;;;……則其通項(xiàng)公式.故選C.【點(diǎn)睛】本小題主要考查歸納推理,考查數(shù)列通項(xiàng)公式的猜想,屬于基礎(chǔ)題.6、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結(jié)合幾何體有,進(jìn)而可知與向量相等的表達(dá)式.【詳解】連接,如下圖示:,.故選:B7、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點(diǎn)的函數(shù)值排除錯(cuò)誤選項(xiàng)即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對稱,選項(xiàng)CD錯(cuò)誤;當(dāng)時(shí),,選項(xiàng)B錯(cuò)誤.故選:A.【點(diǎn)睛】函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng)8、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個(gè)方向向量,因?yàn)?,所以向量為直線的方向向量,故選:D9、D【解析】焦點(diǎn)三角形問題,可結(jié)合為三角形的中位線,判斷:焦點(diǎn)三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點(diǎn)睛】雙曲線上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為雙曲線的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計(jì)算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系10、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因?yàn)閳A,可得,過點(diǎn)作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因?yàn)椋詸E圓的離心率為.故選:B【點(diǎn)睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.11、D【解析】數(shù)列是首項(xiàng)為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因?yàn)榈缺葦?shù)列的首項(xiàng)為1,公比為2,所以數(shù)列是首項(xiàng)為1,公比為4的等比數(shù)列所以故選:D12、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況,共有6種,利用對立事件進(jìn)行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、(1);(2).【解析】(1)設(shè)出點(diǎn)C的坐標(biāo),進(jìn)而根據(jù)點(diǎn)C在中線上及求得答案;(2)設(shè)出點(diǎn)B的坐標(biāo),進(jìn)而求出點(diǎn)M的坐標(biāo),然后根據(jù)中線的方程及求出點(diǎn)B的坐標(biāo),進(jìn)而求出直線BC的方程.【小問1詳解】設(shè)C點(diǎn)的坐標(biāo)為,則由題知,即.【小問2詳解】設(shè)B點(diǎn)的坐標(biāo)為,則中點(diǎn)M坐標(biāo)代入中線CM方程則由題知,即,又,則,所以直線BC方程為.14、【解析】參變分離,可得,設(shè),求導(dǎo)分析單調(diào)性,可得,即得解【詳解】因?yàn)?,所以不等式可化為,設(shè),則,設(shè),由于故在上單調(diào)遞增,且,則當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,所以,則,即.故答案為:15、2【解析】結(jié)合方差、平均數(shù)的公式列方程,化簡求得正確答案.【詳解】依題意設(shè),則,.故答案為:16、【解析】由于,關(guān)于軸對稱,故由題設(shè)知C經(jīng)過,兩點(diǎn),C不經(jīng)過點(diǎn),然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關(guān)于軸對稱,故由題設(shè)知經(jīng)過,兩點(diǎn),所以.又由知,不經(jīng)過點(diǎn),所以點(diǎn)在上,所以.因此,故方程為.故答案為:.【點(diǎn)睛】求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點(diǎn)位置可寫出橢圓方程②待定系數(shù)法:若焦點(diǎn)位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出,;若焦點(diǎn)位置不明確,則需要分焦點(diǎn)在軸上和軸上兩種情況討論,也可設(shè)橢圓的方程為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點(diǎn),在中,、分別為和中點(diǎn),,又因平面平面,面,面,平面【小問2詳解】解:設(shè),以為坐標(biāo)原點(diǎn)如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因?yàn)槊媾c面的夾角余弦值為,所以,即,解得,18、(1);詳見解析;(2)5.【解析】(1)由題可得,由條件可依次求各項(xiàng),即得;猜想,用數(shù)學(xué)歸納法證明即得;(2)設(shè),由題可得,進(jìn)而可得,結(jié)合條件即求.【小問1詳解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想數(shù)列是首項(xiàng),公差為的等差數(shù)列,,用數(shù)學(xué)歸納法證明:當(dāng)時(shí),,成立;假設(shè)時(shí),等式成立,即,則時(shí),,∴,∴當(dāng)時(shí),等式也成立,∴,∴數(shù)列是首項(xiàng),公差為的等差數(shù)列.【小問2詳解】設(shè),由,,即,∴,又,,,∴,,,,,,∴,,,∴,又?jǐn)?shù)列為遞增數(shù)列,∴,解得,由,∴,解得.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第一問的關(guān)鍵是由條件猜想,然后數(shù)學(xué)歸納法證明,第二問求出,,即得.19、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問1詳解】∵,由正弦定理得,又,所以,又,則;【小問2詳解】由余弦定理得,即,所以,當(dāng)且僅當(dāng),取“=”,所以面積的最大值為20、(1)(2)【解析】(1)利用橢圓的離心率、點(diǎn)在橢圓上以及得到的方程組,進(jìn)而得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可得,且,將點(diǎn)代入橢圓方程,得,解得,,即橢圓方程為;【小問2詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年甲乙丙平房交易合同
- 醫(yī)療美容機(jī)構(gòu)空間設(shè)計(jì)與體驗(yàn)提升
- 商業(yè)策略新思維創(chuàng)新管理與競爭
- 創(chuàng)新型企業(yè)運(yùn)營中的風(fēng)險(xiǎn)管理策略
- 2025中國鐵塔校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國電信集團(tuán)限公司云網(wǎng)運(yùn)營部社會(huì)招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國大唐集團(tuán)限公司華北電力運(yùn)營分公司招聘(內(nèi))高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年湖南益陽市資陽區(qū)事業(yè)單位招聘工作人員16人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年浙江湖州經(jīng)開投資發(fā)展集團(tuán)限公司及其下屬子公司招聘18人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年廣東潮州饒平縣衛(wèi)健系統(tǒng)事業(yè)單位招聘206人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2023-2024學(xué)年廣東省深圳市光明區(qū)高二(上)期末地理試卷
- 【8地RJ期末】安徽省蕪湖市弋江區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末考試地理試卷(含解析)
- 養(yǎng)老院安全巡查記錄制度
- 2024年度三方新能源汽車充電樁運(yùn)營股權(quán)轉(zhuǎn)讓協(xié)議3篇
- 模擬集成電路設(shè)計(jì)知到智慧樹章節(jié)測試課后答案2024年秋廣東工業(yè)大學(xué)
- 世界各大洲國家中英文、區(qū)號(hào)、首都大全
- 惡性腫瘤中醫(yī)中藥治療
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 2024-2030年中國波浪發(fā)電商業(yè)計(jì)劃書
- 期末(試題)-2024-2025學(xué)年人教PEP版英語六年級(jí)上冊
- 2024年公安基礎(chǔ)知識(shí)考試題庫及答案
評(píng)論
0/150
提交評(píng)論