版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省南通市如皋中學(xué)數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角中,,,,若,則()A. B. C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.163.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.14.設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為()A. B. C. D.15.將函數(shù)的圖象向左平移個(gè)單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.6.已知集合,,則A. B.C. D.7.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.38.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.269.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.210.二項(xiàng)式的展開式中,常數(shù)項(xiàng)為()A. B.80 C. D.16011.已知向量,夾角為,,,則()A.2 B.4 C. D.12.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.14.已知拋物線的焦點(diǎn)為,其準(zhǔn)線與坐標(biāo)軸交于點(diǎn),過的直線與拋物線交于兩點(diǎn),若,則直線的斜率________.15.在的展開式中,的系數(shù)為________.16.若一個(gè)正四面體的棱長為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A,B,C的對(duì)邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.18.(12分)已知函數(shù).(1)當(dāng)a=2時(shí),求不等式的解集;(2)設(shè)函數(shù).當(dāng)時(shí),,求的取值范圍.19.(12分)在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交于、.以為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.(1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);(2)求證:.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.21.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對(duì)稱軸方程.22.(10分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計(jì)算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點(diǎn)睛】本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.2、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.3、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).【點(diǎn)睛】考查集合并集運(yùn)算,屬于簡單題.4、C【解析】試題分析:設(shè),由題意,顯然時(shí)不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選C.考點(diǎn):1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點(diǎn)晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運(yùn)用,屬于中檔題.解題時(shí)一定要注意分析條件,根據(jù)條件,利用向量的運(yùn)算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號(hào)是否成立,否則易出問題.5、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)椋?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6、D【解析】
因?yàn)?,,所以,,故選D.7、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡單題.8、D【解析】
利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計(jì)算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點(diǎn)睛】本題考查組合的應(yīng)用,此類問題注意實(shí)際問題的合理轉(zhuǎn)化,本題屬于容易題.9、B【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡單題.10、A【解析】
求出二項(xiàng)式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開式的通式,是基礎(chǔ)題.11、A【解析】
根據(jù)模長計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長的求解,屬綜合基礎(chǔ)題.12、C【解析】
根據(jù)題意,知當(dāng)時(shí),,由對(duì)稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對(duì)稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對(duì)稱性的應(yīng)用,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
按照個(gè)位上的9元的支付情況分類,三個(gè)數(shù)位上的錢數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類做到不重不漏,分步做到步驟完整.14、【解析】
求出拋物線焦點(diǎn)坐標(biāo),由,結(jié)合向量的坐標(biāo)運(yùn)算得,直線方程為,代入拋物線方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點(diǎn)睛】本題考查直線與拋物線相交,考查向量的線性運(yùn)算的坐標(biāo)表示.直線方程與拋物線方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線與拋物線相交問題的常用方法.15、【解析】
根據(jù)二項(xiàng)展開式定理,求出含的系數(shù)和含的系數(shù),相乘即可.【詳解】的展開式中,所求項(xiàng)為:,的系數(shù)為.
故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式定理的應(yīng)用,屬于基礎(chǔ)題.16、【解析】
將四面體補(bǔ)成一個(gè)正方體,通過正方體的對(duì)角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長為1,所以正方體的棱長為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對(duì)角線,即,解得,所以球的表面積為.【點(diǎn)睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對(duì)角線長,得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達(dá)式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.【點(diǎn)睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎(chǔ)題.18、(1);(2).【解析】試題分析:(1)當(dāng)時(shí);(2)由等價(jià)于,解之得.試題解析:(1)當(dāng)時(shí),.解不等式,得.因此,的解集為.(2)當(dāng)時(shí),,當(dāng)時(shí)等號(hào)成立,所以當(dāng)時(shí),等價(jià)于.①當(dāng)時(shí),①等價(jià)于,無解.當(dāng)時(shí),①等價(jià)于,解得.所以的取值范圍是.考點(diǎn):不等式選講.19、(1),;(2)見解析.【解析】
(1)將曲線的極坐標(biāo)方程變形為,再由可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的方程與曲線的方程聯(lián)立,求出點(diǎn)、的坐標(biāo),即可得出線段的中點(diǎn)的坐標(biāo);(2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達(dá)定理求得的值,進(jìn)而可得出結(jié)論.【詳解】(1)曲線的極坐標(biāo)方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標(biāo)方程為.將直線的極坐標(biāo)方程化為普通方程得,聯(lián)立,得或,則點(diǎn)、,因此,線段的中點(diǎn)為;(2)由(1)得,,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時(shí)也考查了直線參數(shù)幾何意義的應(yīng)用,涉及韋達(dá)定理的應(yīng)用,考查計(jì)算能力,屬于中等題.20、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點(diǎn)為的中點(diǎn),∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點(diǎn),∴,∴,又平面,平面,,∴平面.(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.21、(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對(duì)稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.22、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度綠色建筑施工現(xiàn)場(chǎng)環(huán)保施工監(jiān)管合同3篇
- 2024年度高端摩托車租賃服務(wù)合作協(xié)議2篇
- 2024年武漢地區(qū)記賬代理業(yè)務(wù)協(xié)議樣本版B版
- 2024年度建筑工程施工合同綠色施工與節(jié)能要求3篇
- 漯河醫(yī)學(xué)高等??茖W(xué)?!恫牧吓c工藝(陶瓷)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度水利工程圍板定制與水利設(shè)施保護(hù)協(xié)議3篇
- 2024年標(biāo)準(zhǔn)個(gè)人借款與連帶責(zé)任擔(dān)保協(xié)議版B版
- 2024年版智能交通系統(tǒng)研發(fā)與實(shí)施合同
- 2024年度實(shí)習(xí)培訓(xùn)生崗位實(shí)習(xí)協(xié)議書模板集錦2篇
- 2024年度室內(nèi)木門行業(yè)聯(lián)盟合作發(fā)展合同3篇
- 2023年高考物理復(fù)習(xí)26電磁感應(yīng)中的圖像問題
- 全生命周期目標(biāo)成本管理
- 基礎(chǔ)手語-南京特殊教育師范學(xué)院中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 淺談國航海外營業(yè)部營銷創(chuàng)新解決方案環(huán)球旅訊特約評(píng)論員-楊超-
- 山西保利平山煤業(yè)股份有限公司煤炭資源開發(fā)利用和礦山環(huán)境保護(hù)與土地復(fù)墾方案
- 牛津譯林版八年級(jí)英語上冊(cè)Unit 7 Reading (I) 示范課教學(xué)設(shè)計(jì)
- 公司財(cái)務(wù)預(yù)算工作報(bào)告
- 民警工作調(diào)動(dòng)申請(qǐng)書
- 2022年軍隊(duì)文職考試公共科目試題
- 題庫(大氣科學(xué)基礎(chǔ)(一)-題庫)資料
- 人音版八年級(jí)上冊(cè)音樂期末測(cè)試試題及答案
評(píng)論
0/150
提交評(píng)論