安徽省六安二中河西校區(qū)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁
安徽省六安二中河西校區(qū)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁
安徽省六安二中河西校區(qū)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁
安徽省六安二中河西校區(qū)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁
安徽省六安二中河西校區(qū)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省六安二中河西校區(qū)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,,為所在平面上任意一點(diǎn),則的最小值為()A.1 B.C.-1 D.-22.方程表示的曲線為焦點(diǎn)在y軸上的橢圓,則k的取值范圍是()A. B.C.或 D.3.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.2C. D.4.已知雙曲線,過點(diǎn)作直線l與雙曲線交于A,B兩點(diǎn),則能使點(diǎn)P為線段AB中點(diǎn)的直線l的條數(shù)為()A.0 B.1C.2 D.35.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點(diǎn),過F1的直線與雙曲線左、右兩支分別交于點(diǎn)P、Q.若,M為PQ的中點(diǎn),且,則雙曲線的離心率為()A. B.C. D.6.在四面體中,空間的一點(diǎn)滿足,若共面,則()A. B.C. D.7.如果,那么下列不等式成立的是()A. B.C. D.8.已知雙曲線左右焦點(diǎn)為,,過的直線與雙曲線的右支交于P,Q兩點(diǎn),且,若為以Q為頂角的等腰三角形,則雙曲線的離心率為()A. B.C. D.9.已知,,,,則()A. B.C. D.10.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長(zhǎng)線上一點(diǎn),,則為()A. B.C. D.11.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.焦距相等 D.離心率相等12.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.隨機(jī)抽取某社區(qū)名居民,調(diào)查他們某一天吃早餐所花的費(fèi)用(單位:元),所獲數(shù)據(jù)的莖葉圖如圖所示,則這個(gè)數(shù)據(jù)的眾數(shù)是_________14.已知點(diǎn),為拋物線:上不同于原點(diǎn)的兩點(diǎn),且,則的面積的最小值為__________.15.已知向量,,不共線,點(diǎn)在平面內(nèi),若存在實(shí)數(shù),,,使得,那么的值為________.16.設(shè)雙曲線(0<a<b)的半焦距為c,直線l過(a,0),(0,b)兩點(diǎn),且原點(diǎn)到直線l的距離為c,求雙曲線的離心率三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)從①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并作答設(shè)等差數(shù)列的前n項(xiàng)和為,,______;設(shè)數(shù)列的前n項(xiàng)和為,(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和注:作答前請(qǐng)先指明所選條件,如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分18.(12分)在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離比到軸的距離大,設(shè)動(dòng)點(diǎn)的軌跡為曲線,分別過曲線上的兩點(diǎn),做曲線的兩條切線,且交于點(diǎn),與直線交于兩點(diǎn)(1)求曲線的方程;(2)求面積的最小值.19.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點(diǎn),與曲線交于,兩點(diǎn),求20.(12分)已知拋物線的準(zhǔn)線方程為(1)求C的方程;(2)直線與C交于A,B兩點(diǎn),在C上是否存在點(diǎn)Q,使得直線QA,QB分別與y軸交于M,N兩點(diǎn),且?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由21.(12分)已知圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn)M()(1)求圓C的方程;(2)已知點(diǎn)P是圓C上的動(dòng)點(diǎn),試求點(diǎn)P到直線的距離的最小值;22.(10分)已知橢圓經(jīng)過點(diǎn),左焦點(diǎn)為.(Ⅰ)求橢圓的方程;(Ⅱ)若是橢圓的右頂點(diǎn),過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】以為建立平面直角坐標(biāo)系,設(shè),把向量的數(shù)量積用坐標(biāo)表示后可得最小值【詳解】如圖,以為建立平面直角坐標(biāo)系,則,設(shè),,,,,∴,∴當(dāng)時(shí),取得最小值故選:C【點(diǎn)睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標(biāo)系,把向量的數(shù)量積轉(zhuǎn)化為坐標(biāo)表示2、D【解析】根據(jù)曲線為焦點(diǎn)在y軸上的橢圓可得出答案.【詳解】因?yàn)榉匠瘫硎镜那€為焦點(diǎn)在y軸上的橢圓,所以,解得.故選:D.3、A【解析】根據(jù)點(diǎn)到直線距離公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知:,該雙曲線的焦點(diǎn)坐標(biāo)為:,雙曲線的漸近線方程為:,所以焦點(diǎn)到漸近線的距離為:,故選:A4、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當(dāng)斜率k存在時(shí),與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個(gè)不同點(diǎn),則,,又根據(jù)是線段的中點(diǎn),則,由此求出與矛盾,故不存在這樣的直線滿足題意;當(dāng)斜率不存在時(shí),過點(diǎn)的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點(diǎn)的直線方程為或,①當(dāng)斜率存在時(shí)有,得(*)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有:,即又方程(*)的兩個(gè)不同的根是兩交點(diǎn)、的橫坐標(biāo),又為線段的中點(diǎn),,即,,使但使,因此當(dāng)時(shí),方程①無實(shí)數(shù)解故過點(diǎn)與雙曲線交于兩點(diǎn)、且為線段中點(diǎn)的直線不存在②當(dāng)時(shí),經(jīng)過點(diǎn)的直線不滿足條件.綜上,符合條件的直線不存在故選:A5、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達(dá)出其他邊長(zhǎng),得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因?yàn)镸為PQ的中點(diǎn),且,所以△為等腰三角形,即,因?yàn)?,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D6、D【解析】根據(jù)四點(diǎn)共面的向量表示,可得結(jié)果.【詳解】由共面知,故選:【點(diǎn)睛】本題主要考查空間中四點(diǎn)共面的向量表示,屬基礎(chǔ)題.7、D【解析】利用不等式的性質(zhì)分析判斷每個(gè)選項(xiàng).【詳解】由不等式的性質(zhì)可知,因?yàn)?,所以,,故A錯(cuò)誤,D正確;由,可得,,故B,C錯(cuò)誤.故選:D8、C【解析】由雙曲線的定義得出中各線段長(zhǎng)(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意,又,所以,從而,,,中,,中.,所以,,所以,故選:C9、D【解析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】因?yàn)椋?,故,又,在上的增函?shù),故,故,故選:D.10、B【解析】根據(jù)空間向量運(yùn)算求得正確答案.【詳解】.故選:B11、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C12、B【解析】直接利用直線垂直公式計(jì)算得到答案.【詳解】因?yàn)閘1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點(diǎn)睛】本題考查了根據(jù)直線垂直計(jì)算參數(shù),屬于簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將個(gè)數(shù)據(jù)寫出來,可得出這組數(shù)據(jù)的眾數(shù).【詳解】這個(gè)數(shù)據(jù)分別為、、、、、、、、、、、、、、,該組數(shù)據(jù)的眾數(shù)為.故答案為:.14、【解析】設(shè),,利用可得即可求得,利用兩點(diǎn)間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以的面積的最小值為,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵點(diǎn)是設(shè),坐標(biāo),采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.15、1【解析】通過平面向量基本定理推導(dǎo)出空間向量基本定理得推論.【詳解】因?yàn)辄c(diǎn)在平面內(nèi),則由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,從而.故答案為:116、e=2.【解析】先求出直線的方程,利用原點(diǎn)到直線的距離為,,求出的值,進(jìn)而根據(jù)求出離心率【詳解】由l過兩點(diǎn)(a,0),(0,b),得l的方程為bx+ay-ab=0.由原點(diǎn)到l的距離為c,得=c.將b=代入平方后整理,得162-16·+3=0.解關(guān)于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴應(yīng)舍去e=.故所求離心率e=2.【點(diǎn)睛】本題考查雙曲線性質(zhì),考查求雙曲線的離心率常用的方法即構(gòu)造出關(guān)于的等式,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,,(2)【解析】(1)設(shè)數(shù)列的首項(xiàng)為,公差為d,選①由求解;選②由求解;選③由求解;則,由,利用數(shù)列通項(xiàng)與前n項(xiàng)和公式求解;(2)易知,再利用錯(cuò)位相減法求解.【小問1詳解】解:設(shè)數(shù)列的首項(xiàng)為,公差為d,選①得,則,選②得,則,選③得,則,所以數(shù)列的通項(xiàng)公式為因?yàn)?,所以?dāng)時(shí),,則當(dāng)時(shí),,則,所以是以首項(xiàng)為2,公比為2的等比數(shù)列,所以【小問2詳解】因?yàn)椋詳?shù)列的前n項(xiàng)和①②①-②得∴,則18、(1)(2)【解析】(1)由題意可得化簡(jiǎn)可得答案;(2)求出、方程并得到、點(diǎn)坐標(biāo),再聯(lián)立,方程求出交點(diǎn)和、點(diǎn)到的距離,可得,設(shè),與拋物線方程聯(lián)立利用韋達(dá)定理得到,設(shè),記,利用導(dǎo)數(shù)可得答案..【小問1詳解】由題意可知:,即:化簡(jiǎn)得:;【小問2詳解】由題意可知:,,,過點(diǎn)的切線斜率為,方程為:①,令,,則,同理:方程為:②,,聯(lián)立①②得:,的交點(diǎn),,點(diǎn)到的距離,所以③,設(shè):,則,整理得,所以,由韋達(dá)定理得:,,代入③式得:,設(shè),記,則,令得(舍負(fù)),時(shí),單調(diào)遞減:時(shí),單調(diào)遞增,所以,當(dāng)且僅當(dāng)時(shí)的最小值為.19、(1),(2)4【解析】(1)根據(jù),即可將直線的極坐標(biāo)方程轉(zhuǎn)化為普通方程;消參數(shù),即可求出曲線的普通方程;(2)由題意易知,求出直線的參數(shù)方程,將其代入曲線的普通方程,利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,即可求出結(jié)果【小問1詳解】解:直線極坐標(biāo)方程為,即,又,可得的普通方程為,曲線的參數(shù)方程是(為參數(shù),消參數(shù),所以曲線的普通方程為【小問2詳解】解:在中令得,,傾斜角,的參數(shù)方程可設(shè)為,即(為參數(shù)),將其代入,得,,設(shè),對(duì)應(yīng)的參數(shù)分別為,,則,,,異號(hào),.20、(1)(2)見解析【解析】(1)根據(jù)準(zhǔn)線方程得出拋物線方程;(2)聯(lián)立直線和拋物線方程,由韋達(dá)定理結(jié)合求解即可.【小問1詳解】【小問2詳解】設(shè),聯(lián)立,得由,得,假設(shè)C上存在點(diǎn)Q,使得直,則又即存在點(diǎn)滿足條件.21、(1)(2)【解析】(1)由圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn),求得圓的半徑,利用圓的標(biāo)準(zhǔn)方程,即可求解;(2)由點(diǎn)到直線的距離公式,求得圓心到直線l的距離為,進(jìn)而得到點(diǎn)P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn),所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點(diǎn)睛】本題主要考查了圓標(biāo)準(zhǔn)方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟練應(yīng)用直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論