版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省吉安市一中2025屆數(shù)學(xué)高一上期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知全集,集合,,則等于()A. B.C. D.2.設(shè)實(shí)數(shù)滿足,函數(shù)的最小值為()A. B.C. D.63.函數(shù)的定義域為()A.(-∞,2) B.(-∞,2]C. D.4.對于函數(shù)的圖象,關(guān)于直線對稱;關(guān)于點(diǎn)對稱;可看作是把的圖象向左平移個單位而得到;可看作是把的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍而得到以上敘述正確的個數(shù)是A.1個 B.2個C.3個 D.4個5.已知函數(shù)的定義域與值域均為,則()A. B.C. D.16.設(shè)集合,則集合的元素個數(shù)為()A.0 B.1C.2 D.37.下列函數(shù)中最小正周期為的是A. B.C. D.8.設(shè)集合,,則集合=()A B.C. D.9.已知,則x等于A. B.C. D.10.若集合A={x|-2<x<1},B={x|x<-1或x>3},則A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}二、填空題:本大題共6小題,每小題5分,共30分。11.若扇形的周長是16,圓心角是2(rad),則扇形的面積是__________.12.已知函數(shù)的圖象恒過點(diǎn)P,若點(diǎn)P在角的終邊上,則_________13.已知扇形的圓心角為120°,半徑為3,則扇形的面積是________.14.函數(shù)f(x)=cos的圖象向右平移個單位長度,得到函數(shù)的圖象,則函數(shù)的解析式為_______,函數(shù)的值域是________15.函數(shù)的遞減區(qū)間是__________.16.—個幾何體的三視圖如圖所示,則該幾何體的體積為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2(1)設(shè)t=sinx+cosx,將函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)的解析式;(2)對任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍18.如圖,在直三棱柱ABC-A1B1C1中,D、E分別為AB、BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求證:(1)直線A1C1∥平面B1DE;(2)平面A1B1BA⊥平面A1C1F.19.年,全世界范圍內(nèi)都受到“新冠”疫情的影響,了解某些細(xì)菌、病毒的生存條件、繁殖習(xí)性等對于預(yù)防疾病的傳播、保護(hù)環(huán)境有極其重要的意義.某科研團(tuán)隊在培養(yǎng)基中放入一定量某種細(xì)菌進(jìn)行研究.經(jīng)過分鐘菌落的覆蓋面積為,經(jīng)過分鐘覆蓋面積為,后期其蔓延速度越來越快;現(xiàn)菌落的覆蓋面積(單位:)與經(jīng)過時間(單位:)的關(guān)系有兩個函數(shù)模型與可供選擇.(參考數(shù)據(jù):,,,,,,)(1)試判斷哪個函數(shù)模型更合適,說明理由,并求出該模型的解析式;(2)在理想狀態(tài)下,至少經(jīng)過多久培養(yǎng)基中菌落面積能超過?(結(jié)果保留到整數(shù))20.已知正三棱柱,是的中點(diǎn)求證:(1)平面;(2)平面平面21.已知函數(shù),,(1)求函數(shù)的值域;(2)若對任意的,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)若對任意的,都存在四個不同的實(shí)數(shù),,,,使得,其中,2,3,4,求實(shí)數(shù)a的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】先求得集合B的補(bǔ)集,再根據(jù)交集運(yùn)算的定義,即可求得答案.【詳解】由題意得:,所以,故選:D2、A【解析】將函數(shù)變形為,再根據(jù)基本不等式求解即可得答案.詳解】解:由題意,所以,所以,當(dāng)且僅當(dāng),即時等號成立,所以函數(shù)的最小值為.故選:A【點(diǎn)睛】易錯點(diǎn)睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方3、D【解析】利用根式、分式的性質(zhì)列不等式組求定義域即可.【詳解】由題設(shè),,可得,所以函數(shù)定義域為.故選:D4、B【解析】由判斷;由判斷;由的圖象向左平移個單位,得到的圖象判斷;由的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象判斷.【詳解】對于函數(shù)的圖象,令,求得,不是最值,故不正確;令,求得,可得的圖象關(guān)于點(diǎn)對稱,故正確;把的圖象向左平移個單位,得到的圖象,故不正確;把的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象,故正確,故選B【點(diǎn)睛】本題通過對多個命題真假的判斷,綜合考查三角函數(shù)的對稱性以及三角函數(shù)的圖象的變換規(guī)律,屬于中檔題.這種題型綜合性較強(qiáng),也是高考的命題熱點(diǎn),同學(xué)們往往因為某一處知識點(diǎn)掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細(xì)心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點(diǎn)入手,然后集中精力突破較難的命題.5、A【解析】根據(jù)函數(shù)的定義域可得,,,再根據(jù)函數(shù)的值域即可得出答案.【詳解】解:∵的解集為,∴方程的解為或4,則,,,∴,又因函數(shù)的值域為,∴,∴.故選:A.6、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的運(yùn)算即可得到結(jié)果.【詳解】集合,所以.故選:B.7、A【解析】利用周期公式對四個選項中周期進(jìn)行求解【詳解】A項中Tπ,B項中T,C項中T,D項中T,故選A【點(diǎn)睛】本題主要考查了三角函數(shù)周期公式的應(yīng)用.對于帶絕對值的函數(shù)解析式,可結(jié)合函數(shù)的圖象來判斷函數(shù)的周期8、B【解析】先根據(jù)一元二次不等式和對數(shù)不等式的求解方法求得集合M、N,再由集合的交集運(yùn)算可得選項【詳解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故選:B9、A【解析】把已知等式變形,可得,進(jìn)一步得到,則x值可求【詳解】由題意,可知,可得,即,所以,解得故選A【點(diǎn)睛】本題主要考查了有理指數(shù)冪與根式的運(yùn)算,其中解答中熟記有理指數(shù)冪和根式的運(yùn)算性質(zhì),合理運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.10、A【解析】直接根據(jù)交集的定義即可得解.【詳解】解:因為A={x|-2<x<1},B={x|x<-1或x>3},所以.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、16【解析】因為函數(shù)的周長為16,圓心角是2,設(shè)扇形的半徑為,則,解得r=4,所以扇形的弧長為8,所以面積為,故答案為16.12、【解析】由對數(shù)函數(shù)的性質(zhì)可得點(diǎn)的坐標(biāo),由三角函數(shù)的定義求得與的值,再由正弦的二倍角公式即可求解.【詳解】易知恒過點(diǎn),即,因為點(diǎn)在角的終邊上,所以,所以,,所以,故答案為:.13、【解析】先將角度轉(zhuǎn)化成弧度制,再利用扇形面積公式計算即可.【詳解】扇形的圓心角為120°,即,故扇形面積.故答案為:.14、①.②.【解析】由題意利用函數(shù)的圖象變換規(guī)律求得的解析式,可得的解析式,再根據(jù)余弦函數(shù)的值域,二次函數(shù)的性質(zhì),求得的值域【詳解】函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,函數(shù),,故當(dāng)時,取得最大值為;當(dāng)時,取得最小值為,故的值域為,,故答案為:;,15、【解析】先求出函數(shù)的定義域,再根據(jù)復(fù)合函數(shù)單調(diào)性“同增異減”原則求出函數(shù)的單調(diào)遞減區(qū)間即可得出答案【詳解】解:意可知,解得,所以的定義域是,令,對稱軸是,在上是增函數(shù),在是減函數(shù),又在定義域上是增函數(shù),是和的復(fù)合函數(shù),的單調(diào)遞減區(qū)間是,故答案為:【點(diǎn)睛】本題主要考查對數(shù)型復(fù)合函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題16、30【解析】由三視圖可知這是一個下面是長方體,上面是個平躺著的五棱柱構(gòu)成的組合體長方體的體積為五棱柱的體積是故該幾何體的體積為點(diǎn)睛:本題主要考查的知識點(diǎn)是由三視圖求面積,體積.本題通過觀察三視圖這是一個下面是長方體,上面是個平躺著的五棱柱構(gòu)成的組合體,分別求出長方體和五棱柱的體積,然后相加可得答案三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】:(1)首先由兩角和的正弦公式可得,進(jìn)而即可求出的取值范圍;接下來對已知的函數(shù)利用進(jìn)行表示;對于(2),首先由的取值范圍,求出的取值范圍,再對已知進(jìn)行恒等變形可得在區(qū)間上恒成立,據(jù)此即可得到關(guān)于的不等式,解不等式即可求出的取值范圍.試題解析:(1),因為,所以,其中,即,.(2)由(1)知,當(dāng)時,,又在區(qū)間上單調(diào)遞增,所以,從而,要使不等式在區(qū)間上恒成立,只要,解得:.點(diǎn)晴:本題考查是求函數(shù)的解析式及不等式恒成立問題.(1)首先,可求出的取值范圍;接下來對已知的函數(shù)利用進(jìn)行表示;(2)先求二次函數(shù),再解不等式.18、證明過程詳見解析【解析】(1)先證明DE∥A1C1,即證直線A1C1∥平面B1DE.(2)先證明DE⊥平面AA1B1B,再證明A1F⊥平面B1DE,即證平面AA1B1B⊥平面A1C1F.【詳解】證明:(1)∵D,E分別為AB,BC的中點(diǎn),∴DE為△ABC的中位線,∴DE∥AC,∵ABC-A1B1C1為棱柱,∴AC∥A1C1,∴DE∥A1C1,∵DE?平面B1DE,且A1C1?平面B1DE,∴A1C1∥平面B1DE;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1?平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F?平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D?平面B1DE,∴A1F⊥平面B1DE,又∵A1F?平面A1C1F,∴平面AA1B1B⊥平面A1C1F【點(diǎn)睛】本題主要考查空間直線平面位置關(guān)系的證明,意在考查學(xué)生對這些知識的掌握水平和空間想象轉(zhuǎn)化能力.19、(1)應(yīng)選模型為,理由見解析;(2)【解析】(1)根據(jù)增長速度可知應(yīng)選,根據(jù)已知數(shù)據(jù)可構(gòu)造方程組求得,進(jìn)而得到函數(shù)模型;(2)根據(jù)函數(shù)模型可直接構(gòu)造不等式,結(jié)合參考數(shù)據(jù)計算可得,由此可得結(jié)論.小問1詳解】的增長速度越來越快,的增長速度越來越慢,應(yīng)選模型為;則,解得:,,又,函數(shù)模型為;【小問2詳解】由題意得:,即,,,,至少經(jīng)過培養(yǎng)基中菌落面積能超過.20、(1)見解析(2)見解析【解析】(1)連接,交于點(diǎn),連結(jié),由棱柱的性質(zhì)可得點(diǎn)是的中點(diǎn),根據(jù)三角形中位線定理可得,利用線面平行的判定定理可得平面;(2)由正棱柱的性質(zhì)可得平面,于是,再由正三角形的性質(zhì)可得,根據(jù)線面垂直的判定定理可得平面,從而根據(jù)面面垂直的判定定理可得結(jié)論.試題解析:(1)連接,交于點(diǎn),連結(jié),因為正三棱柱,所以側(cè)面是平行四邊形,故點(diǎn)是的中點(diǎn),又因為是的中點(diǎn),所以,又因為平面,平面,所以平面(2)因為正三棱柱,所以平面,又因為平面,所以,因為正三棱柱,是的中點(diǎn),是的中點(diǎn),所以,又因為,所以平面,又因為平面,所以平面平面【方法點(diǎn)晴】本題主要考查線面平行的判定定理、線面垂直及面面垂直的證明,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.本題(1)是就
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小班雙腳跳躍課程設(shè)計
- 媽媽老師主題課程設(shè)計
- 小海豚主題課程設(shè)計
- 幼兒園動物配色課程設(shè)計
- 圖像字幕生成課程設(shè)計
- 手寫服裝加工合同范例
- 聘任合同范例總經(jīng)理
- 影樓資金入股合同范例
- 全案設(shè)計落地合同范例
- 樓頂售賣物品合同范例
- 高級英語(1)智慧樹知到答案章節(jié)測試2023年齊魯工業(yè)大學(xué)
- 脫不花三十天溝通訓(xùn)練營
- 機(jī)床操作說明書
- 義務(wù)教育物理課程標(biāo)準(zhǔn)(2022年版)測試卷(含答案)
- NY/T 396-2000農(nóng)用水源環(huán)境質(zhì)量監(jiān)測技術(shù)規(guī)范
- GB/T 39901-2021乘用車自動緊急制動系統(tǒng)(AEBS)性能要求及試驗方法
- GB/T 36652-2018TFT混合液晶材料規(guī)范
- 國際商務(wù)談判 袁其剛課件 第四章-國際商務(wù)談判的結(jié)構(gòu)和過程
- 國際商法教案(20092新版)
- 江蘇開放大學(xué)漢語作為第二語言教學(xué)概論期末復(fù)習(xí)題
- 工作簡化方法改善與流程分析課件
評論
0/150
提交評論