佳木斯市第一中學(xué)2025屆高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
佳木斯市第一中學(xué)2025屆高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
佳木斯市第一中學(xué)2025屆高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
佳木斯市第一中學(xué)2025屆高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
佳木斯市第一中學(xué)2025屆高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

佳木斯市第一中學(xué)2025屆高一上數(shù)學(xué)期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列命題中正確的是A. B.C. D.2.若在是減函數(shù),則的最大值是A. B.C. D.3.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸C.4寸 D.5寸4.已知,若函數(shù)在上為減函數(shù),且函數(shù)在上有最大值,則a的取值范圍為()A. B.C. D.5.下列不等關(guān)系中正確的是()A. B.C. D.6.已知,且,則的值為()A. B.C. D.7.下列函數(shù)中,在R上為增函數(shù)的是()A.y=2-xC.y=2x8.已知是球的直徑上一點,,平面,為垂足,截球所得截面的面積為,則球的表面積為A. B.C. D.9.若冪函數(shù)f(x)的圖象過點(16,8),則f(x)<f(x2)的解集為A.(–∞,0)∪(1,+∞) B.(0,1)C.(–∞,0) D.(1,+∞)10.已知函數(shù),且,則A.3 B.C.9 D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù),則________12.已知函數(shù),正實數(shù),滿足,且,若在區(qū)間上的最大值為2,則________.13.函數(shù)一段圖象如圖所示則的解析式為______14.過點P(4,2)并且在兩坐標(biāo)軸上截距相等的直線方程為(化為一般式)________.15.某高中校為了減輕學(xué)生過重的課業(yè)負(fù)擔(dān),提高育人質(zhì)量,在全校所有的1000名高中學(xué)生中隨機抽取了100名學(xué)生,了解他們完成作業(yè)所需要的時間(單位:h),將數(shù)據(jù)按照0.5,1,1,1.5,1.5,2,2,2.5,2.5,3,3,3.5,分成6組,并將所得的數(shù)據(jù)繪制成頻率分布直方圖(如圖所示).由圖中數(shù)據(jù)可知a=___________;估計全校高中學(xué)生中完成作業(yè)時間不少于3h的人數(shù)為16.不等式對任意實數(shù)都成立,則實數(shù)的取值范圍是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象過點與點.(1)求,的值;(2)若,且,滿足條件的的值.18.某校在2013年的自主招生考試成績中隨機抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格(1)求出第4組的頻率,并補全頻率分布直方圖;(2)根據(jù)樣本頻率分布直方圖估計樣本的中位數(shù)與平均數(shù);(3)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?19.已知二次函數(shù)滿足對任意,都有;;的圖象與軸的兩個交點之間的距離為.(1)求的解析式;(2)記,(i)若為單調(diào)函數(shù),求的取值范圍;(ii)記的最小值為,若方程有兩個不等的根,求的取值范圍.20.已知函數(shù),滿足,其一個零點為(1)當(dāng)時,解關(guān)于x的不等式;(2)設(shè),若對于任意的實數(shù),,都有,求M的最小值21.為貫徹黨中央、國務(wù)院關(guān)于“十三五”節(jié)能減排的決策部署,2022年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備.通過市場分析,全年需投人固定成本2500萬元,生產(chǎn)百輛需另投人成本萬元.由于起步階段生產(chǎn)能力有限,不超過120,且經(jīng)市場調(diào)研,該企業(yè)決定每輛車售價為8萬元,且全年內(nèi)生產(chǎn)的汽車當(dāng)年能全部銷售完.(1)求2022年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式(利潤銷售額-成本);(2)2022年產(chǎn)量多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】本題考查向量基本運算對于A,,故A不正確;對于B,由于向量的加減運算的結(jié)果仍為向量,所以,故B錯誤;由于向量的數(shù)量積結(jié)果是一個實數(shù),故C錯誤,C的結(jié)果應(yīng)等于0;D正確2、A【解析】因為,所以由得因此,從而的最大值為,故選:A.3、B【解析】根據(jù)題意可得平地降雨量,故選B.考點:1.實際應(yīng)用問題;2.圓臺的體積.4、A【解析】由復(fù)合函數(shù)在上的單調(diào)性可構(gòu)造不等式求得,結(jié)合已知可知;當(dāng)時,,若,可知無最大值;若,可得到,解不等式,與的范圍結(jié)合可求得結(jié)果.【詳解】在上為減函數(shù),解得:當(dāng)時,,此時當(dāng),時,在上單調(diào)遞增無最大值,不合題意當(dāng),時,在上單調(diào)遞減若在上有最大值,解得:,又故選【點睛】本題考查根據(jù)復(fù)合函數(shù)單調(diào)性求解參數(shù)范圍、根據(jù)分段函數(shù)有最值求解參數(shù)范圍的問題;關(guān)鍵是能夠通過分類討論的方式得到處于不同范圍時在區(qū)間內(nèi)的單調(diào)性,進(jìn)而根據(jù)函數(shù)有最值構(gòu)造不等式;易錯點是忽略對數(shù)真數(shù)大于零的要求,造成范圍求解錯誤.5、C【解析】對于A,作差變形,借助對數(shù)函數(shù)單調(diào)性判斷;對于C,利用均值不等式計算即可判斷;對于B,D,根據(jù)不等式的性質(zhì)及對數(shù)函數(shù)單調(diào)性判斷作答.【詳解】對于A,,而函數(shù)在單調(diào)遞增,顯然,則,A不正確;對于B,因為,所以,故,B不正確;對于C,顯然,,,C正確;對于D,因為,所以,即,D不正確.故選:C6、B【解析】先通過誘導(dǎo)公式把轉(zhuǎn)化成,再結(jié)合平方關(guān)系求解.【詳解】,又,.故選:B.7、C【解析】對于A,y=2-x=12x,在R上是減函數(shù);對于B,y=x2在-∞,0上是減函數(shù),在0,+∞上是增函數(shù);對于C,當(dāng)【詳解】解:對于A,y=2-x=12對于B,y=x2在-∞,0對于C,當(dāng)x≥0時,y=2x是增函數(shù),當(dāng)x<0時,y=x是增函數(shù),所以函數(shù)fx對于D,y=lgx的定義域是0,+∞故選:C.8、C【解析】設(shè)球的半徑為,根據(jù)題意知球心到平面的距離,截球所得截面圓的半徑為1,由,截面圓半徑,球半徑構(gòu)成直角三角形,利用勾股定理,即可求出球半徑,進(jìn)而求出球的表面積.【詳解】如圖所示,設(shè)球的半徑為,因為,所以,又因為截球所得截面的面積為,所以,在中,有,即,所以,故球的表面積,故選:C.【點睛】本題主要考查球的基本應(yīng)用,答題關(guān)鍵點在于明確球心到截面的距離,截面圓半徑,球半徑三者可構(gòu)成直角三角形,進(jìn)而滿足勾股定理.9、D【解析】先根據(jù)冪函數(shù)f(x)的圖象過點(16,8)求出α=>0,再根據(jù)冪函數(shù)的單調(diào)性得到0<x<x2,解不等式即得不等式的解集.【詳解】設(shè)冪函數(shù)的解析式是f(x)=xα,將點(16,8)代入解析式得16α=8,解得α=>0,故函數(shù)f(x)在定義域是[0,+∞),故f(x)在[0,+∞)遞增,故,解得x>1.故選D【點睛】(1)本題主要考查冪函數(shù)的概念和解析式的求法,考查冪函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)冪函數(shù)在是增函數(shù),,冪函數(shù)在是減函數(shù),且以兩條坐標(biāo)軸為漸近線.10、C【解析】利用函數(shù)的奇偶性以及已知條件轉(zhuǎn)化求解即可【詳解】函數(shù)g(x)=ax3+btanx是奇函數(shù),且,因為函數(shù)f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,則=﹣g()+6=3+6=9故選C【點睛】本題考查函數(shù)的奇偶性的應(yīng)用,函數(shù)值的求法,考查計算能力.已知函數(shù)解析式求函數(shù)值,可以直接將變量直接代入解析式從而得到函數(shù)值,直接代入較為繁瑣的題目,可以考慮函數(shù)的奇偶性的應(yīng)用,利用部分具有奇偶性的特點進(jìn)行求解,就如這個題目.二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】令x=1代入即可求出結(jié)果.【詳解】令,則.【點睛】本題主要考查求函數(shù)的值,屬于基礎(chǔ)題型.12、【解析】先畫出函數(shù)圖像并判斷,再根據(jù)范圍和函數(shù)單調(diào)性判斷時取最大值,最后計算得到答案.【詳解】如圖所示:根據(jù)函數(shù)的圖象得,所以.結(jié)合函數(shù)圖象,易知當(dāng)時在上取得最大值,所以又,所以,再結(jié)合,可得,所以.故答案為:【點睛】本題考查對數(shù)型函數(shù)的圖像和性質(zhì)、函數(shù)的單調(diào)性的應(yīng)用和最值的求法,是中檔題.13、【解析】由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,從而得到函數(shù)的解析式【詳解】由函數(shù)的圖象的頂點的縱坐標(biāo)可得,再由函數(shù)的周期性可得,再由五點法作圖可得,故函數(shù)的解析式為,故答案為【點睛】本題主要考查函數(shù)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,屬于中檔題14、或【解析】根據(jù)直線在兩坐標(biāo)軸上截距相等,則截距可能為也可能不為,再結(jié)合直線方程求法,即可對本題求解【詳解】由題意,設(shè)直線在兩坐標(biāo)軸上的截距均為,當(dāng)時,設(shè)直線方程為:,因為直線過點,所以,即,所以直線方程為:,即:,當(dāng)時,直線過點,且又過點,所以直線的方程為,即:,綜上,直線的方程為:或.故答案為:或【點睛】本題考查直線方程的求解,考查能力辨析能力,應(yīng)特別注意,截距相等,要分截距均為和均不為兩種情況分別討論.15、①.0.1②.50【解析】利用頻率之和為1可求a,由圖求出完成作業(yè)時間不少于3h的頻率,由頻數(shù)=總數(shù)×【詳解】由0.5×2a+0.3+0.4+0.5+0.6=1可求a=0.1;由圖可知,全校高中學(xué)生中完成作業(yè)時間不少于3h的頻率為0.5×0.1=0.05故答案為:0.1;5016、【解析】利用二次不等式與相應(yīng)的二次函數(shù)的關(guān)系,易得結(jié)果.詳解】∵不等式對任意實數(shù)都成立,∴∴<k<2故答案為【點睛】(1)二次函數(shù)圖象與x軸交點的橫坐標(biāo)、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現(xiàn)形式(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)由給定條件列出關(guān)于,的方程組,解之即得;(2)由(1)的結(jié)論列出指數(shù)方程,借助換元法即可作答.【詳解】(1)由題意可得,解得,,(2)由(1)可得,而,且,于是有,設(shè),,從而得,解得,即,解得,所以滿足條件的.18、(1)第4組的頻率為0.2,作圖見解析(2)樣本中位數(shù)的估計值為,平均數(shù)為87.25(3)0.9【解析】(1)利用頻率和為1,計算可得答案,計算可得第四個矩形的高度為0.2÷5=0.04,由此作圖即可;(2)設(shè)樣本的中位數(shù)為x,由5×0.01+5×0.07+(x﹣85)×0.06=0.5解出即可得到中位數(shù),根據(jù)77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10計算即可得到平均數(shù);(3)通過列舉法可得所有基本事件的總數(shù)以及至少有一人是“優(yōu)秀”的總數(shù),再利用古典概型概率公式計算可得.【詳解】(1)其它組的頻率為(0.01+0.07+0.06+0.02)×5=0.8,所以第4組的頻率為0.2,頻率分布圖如圖:(2)設(shè)樣本的中位數(shù)為x,則5×0.01+5×0.07+(x﹣85)×0.06=0.5,解得x,∴樣本中位數(shù)的估計值為,平均數(shù)為77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10=87.25;(3)依題意良好的人數(shù)為40×0.4=16人,優(yōu)秀的人數(shù)為40×0.6=24人優(yōu)秀與良好的人數(shù)比為3:2,所以采用分層抽樣的方法抽取的5人中有優(yōu)秀3人,良好2人,記“從這5人中選2人至少有1人是優(yōu)秀”為事件M,將考試成績優(yōu)秀的三名學(xué)生記為A,B,C,考試成績良好的兩名學(xué)生記為a,b,從這5人中任選2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab共10個基本事件,事件M含的情況是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9個,所以P(M)0.9【點睛】本題考查了頻率分布直方圖,考查了由頻率分布直方圖計算中位數(shù)和平均數(shù),考查了古典概型的概率公式,屬于中檔題.19、(1);(2)(i);(ii)或.【解析】(1)根據(jù)二次函數(shù)的對稱軸、求參數(shù)a、b、c,寫出的解析式;(2)(i)利用二次函數(shù)的性質(zhì),結(jié)合的區(qū)間單調(diào)性求的取值范圍;(ii)討論、、,結(jié)合二次函數(shù)的性質(zhì)求最小值的表達(dá)式,再令并應(yīng)用數(shù)形結(jié)合的方法研究的零點情況求的取值范圍.【詳解】(1)設(shè)由題意知:對稱軸,,又,則,,設(shè)的兩根為,,則,,由已知:,解得.(2)(i),其對稱軸為為單調(diào)函數(shù),或,解得或.的取值范圍是.(ii),,對稱軸①當(dāng),即時,區(qū)間單調(diào)遞增,.②當(dāng),即時,在區(qū)間單調(diào)遞減,③當(dāng),即時,,函數(shù)零點即為方程的根令,即,作出的簡圖如圖所示①當(dāng)時,,或,解得或,有個零點;②當(dāng)時,有唯一解,解得,有個零點;③當(dāng)時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論