版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江蘇省南通市南通中學(xué)數(shù)學(xué)高二上期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為A. B.C. D.2.在四面體中,為的中點,為棱上的點,且,則()A. B.C. D.3.設(shè)拋物線的焦點為F,準線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.84.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=05.經(jīng)過兩點直線的傾斜角是()A. B.C. D.6.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.7.設(shè)正方體的棱長為,則點到平面的距離是()A. B.C. D.8.用數(shù)學(xué)歸納法時,從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.9.過點且平行于直線的直線的方程為()A. B.C. D.10.當(dāng)圓的圓心到直線的距離最大時,()A B.C. D.11.設(shè)點關(guān)于坐標原點的對稱點是B,則等于()A.4 B.C. D.212.函數(shù)的大致圖象為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足:,,則______14.已知數(shù)列滿足,則的前20項和___________.15.圓錐的軸截面是邊長為2的等邊三角形,為底面中心,為的中點,動點在圓錐底面內(nèi)(包括圓周).若,則點形成的軌跡的長度為______16.將邊長為2的正方形繞其一邊所在的直線旋轉(zhuǎn)一周,所得的圓柱體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓一個頂點恰好是拋物線的焦點,橢圓C的離心率為.(Ⅰ)求橢圓C的標準方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標為2的點P,若橢圓C上有兩個點A,B使得的平分線垂直于坐標軸,且點B與點A的橫坐標之差為,求直線AP的方程.18.(12分)同時擲兩顆質(zhì)地均勻的骰子(六個面分別標有數(shù)字1,2,3,4,5,6的正方體)(1)求兩顆骰子向上的點數(shù)相等的概率;(2)求兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的整數(shù)倍的概率19.(12分)已知橢圓的上一點處的切線方程為,橢圓C上的點與其右焦點F的最短距離為,離心率為(1)求橢圓C的標準方程;(2)若點P為直線上任一點,過P作橢圓的兩條切線PA,PB,切點為A,B,求證:20.(12分)已知橢圓與直線相切,點G為橢圓上任意一點,,,且的最大值為3(1)求橢圓C的標準方程;(2)設(shè)直線與橢圓C交于不同兩點E,F(xiàn),點O為坐標原點,且,當(dāng)?shù)拿娣e取最大值時,求的取值范圍21.(12分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓的標準方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:22.(10分)已知橢圓C:的左右焦為,,點是該橢圓上任意一點,當(dāng)軸時,,(1)求橢圓C的標準方程;(2)記,求實數(shù)m的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質(zhì)2、A【解析】利用空間向量加法運算,減法運算,數(shù)乘運算即可得到答案.【詳解】如圖故選:A3、D【解析】由題可得方程,進而可得點坐標及點坐標,利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標為,代入拋物線方程,得P點坐標為,∴.故選:D.4、C【解析】兩圓方程相減得出公共弦所在直線的方程.【詳解】兩圓方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C5、B【解析】求出直線的斜率后可得傾斜角【詳解】經(jīng)過兩點的直線的斜率為,設(shè)該直線的傾斜角為,則,又,所以.故選:B6、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B7、D【解析】建立空間直角坐標系,根據(jù)空間向量所學(xué)點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設(shè)平面的法向量,所以,,即,設(shè),所以,,即,設(shè)點到平面的距離為,所以,故選:D.8、C【解析】分別求出n=k時左端的表達式,和n=k+1時左端的表達式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時,左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時左端的表達式和n=k+1時左端的表達式,是解題的關(guān)鍵9、B【解析】根據(jù)平行設(shè)直線方程,代入點計算得到答案.【詳解】設(shè)直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.10、C【解析】求出圓心坐標和直線過定點,當(dāng)圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當(dāng)與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.11、A【解析】求出點關(guān)于坐標原點的對稱點是B,再利用兩點之間的距離即可求得結(jié)果.【詳解】點關(guān)于坐標原點的對稱點是故選:A12、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當(dāng)時排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因為時,,排除B.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令n=n-1代回原式,相減可得,利用累乘法,即可得答案.【詳解】因為,所以,兩式相減可得,整理得,所以,整理得,又,解得.故答案為:14、135【解析】直接利用數(shù)列的遞推關(guān)系式寫出相鄰四項之和,進而求出數(shù)列的和.【詳解】數(shù)列滿足,所以,故,當(dāng)時,,當(dāng)時,,,當(dāng)時,,所以.故答案為:135.15、【解析】建立空間直角坐標系設(shè),,,,于是,,因為,所以,從而,,此為點形成的軌跡方程,其在底面圓盤內(nèi)的長度為16、【解析】依題意可得圓柱的底面半徑、高,再根據(jù)圓柱的體積公式計算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達定理可得A點坐標,同理可得B點坐標,結(jié)合橫坐標之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點為,則橢圓C的一個頂點為,即.由,解得.∴橢圓C的標準方程是;(Ⅱ)由題可知點,設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點,∴,即.把換成,得.∴,解得,當(dāng)時,直線BP的方程為,經(jīng)驗證與橢圓C相切,不符合題意;當(dāng)時,直線BP的方程為,符合題意.∴直線AP得方程為.【點睛】關(guān)鍵點點睛:兩條直線關(guān)于直線對稱,兩直線的傾斜角互補,斜率互為相反數(shù).18、(1);(2).【解析】(1)求出同時擲兩顆骰子的基本事件數(shù)、及骰子向上的點數(shù)相等的基本事件數(shù),應(yīng)用古典概型的概率求法,求概率即可.(2)列舉出兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)的基本事件,應(yīng)用古典概型的概率求法,求概率即可.【小問1詳解】同時擲兩顆骰子包括的基本事件共種,擲兩顆骰子向上的點數(shù)相等包括的基本事件為6種,故所求的概率為;【小問2詳解】兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)時,用坐標記為,,,,,,,,,,,,,,,,共包括16個基本事件,故兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)有的概率為.19、(1)(2)證明見解析【解析】(1)設(shè)為橢圓上的點,為橢圓的右焦點,求出然后求解最小值,推出,,,得到雙曲線方程(2)設(shè),,,,,即可得到,依題意可得以、為切點的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問1詳解】解:設(shè)為橢圓上的點,為橢圓的右焦點,因為,所以,又,所以當(dāng)且僅當(dāng)時,,因為,所以,,因為,所以,故橢圓的標準方程為【小問2詳解】解:由(1)知,設(shè),,,,,所以,由題知,以為切點的橢圓切線方程為,以為切點的橢圓切線方程為,又點在直線、上,所以、,所以直線的方程為,當(dāng)時,直線的斜率不存在,直線斜率為,所以,當(dāng)時,,所以,所以,綜上可得;20、(1)(2)【解析】(1)設(shè)點,根據(jù)題意,得到,根據(jù)向量數(shù)量積的坐標表示,得到,根據(jù)其最小值,求出,即可得出橢圓方程;(2)設(shè),,,聯(lián)立直線與橢圓方程,根據(jù)韋達定理,由弦長公式,以及點到直線距離公式,求出的面積的最值,得到;得出點的軌跡為橢圓,且點為橢圓的左、右焦點,記,則,得到,根據(jù)對勾函數(shù)求出最值.【小問1詳解】設(shè)點,由題意知,所以:,則,當(dāng)時,取得最大值,即,故橢圓C的標準方程是【小問2詳解】設(shè),,,則由得,,點O到直線l的距離,對用均值不等式,則:當(dāng)且僅當(dāng)即,①,S取得最大值.此時,,,即,代入①式整理得,即點M的軌跡為橢圓且點,為橢圓的左、右焦點,即記,則于是:,由對勾函數(shù)的性質(zhì):當(dāng)時,,且,故的取值范圍為21、(1);(2)證明見解析【解析】(1)由可求出,結(jié)合離心率可知,進而可求出,即可求出標準方程.(2)由題意知,,則由直線的點斜式方程可得直線的解析式為,與橢圓進行聯(lián)立,設(shè),,結(jié)合韋達定理可得,從而由斜率的計算公式對進行整理化簡從而可證明.【詳解】(1)解:因為,所以.又因為離心率,所以,則,所以橢圓的標準方程是(2)證明:由題意知,,,則直線的解析式為,代入橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)課程設(shè)計案例
- 微波課程設(shè)計開題報告
- 染整技術(shù)員工藝流程設(shè)計與實施能力考核試卷
- 工程勘察課程設(shè)計報告
- 衛(wèi)生陶瓷制品倉儲與物流配送考核試卷
- 玉石歷史文化研究與傳統(tǒng)工藝傳承考核試卷
- 石材裝飾施工流程規(guī)范考核試卷
- 玻璃制造行業(yè)的環(huán)境保護問題考核試卷
- 煤炭及制品進出口業(yè)務(wù)考核試卷
- 社會創(chuàng)業(yè)與社會創(chuàng)新實踐考核試卷
- 南寧二中、柳州高中2025屆高一上數(shù)學(xué)期末聯(lián)考試題含解析
- 2024年秋季學(xué)期新魯教版(54制)6年級上冊英語課件 Unit6 Section A (3a-3c)(第3課時)
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期1月教學(xué)質(zhì)量檢測(期末考試)地理試題 附答案
- 【期末復(fù)習(xí)提升卷】浙教版2022-2023學(xué)年八年級上學(xué)期數(shù)學(xué)期末壓軸題綜合訓(xùn)練試卷1(解析版)
- 山東省臨沂市費縣2023-2024學(xué)年八年級上學(xué)期1月期末生物試題
- 2024年廣東石油化工學(xué)院公開招聘部分新機制合同工20名歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 青年產(chǎn)業(yè)園鋁灰和廢酸資源化綜合利用試驗項目環(huán)評報告表
- PDCA血液透析水循環(huán)案例匯報
- 巖石鉆機施工方案
- 山東省煙臺市2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 2024年貴州省銅仁市四年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析
評論
0/150
提交評論