福州第一中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
福州第一中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
福州第一中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
福州第一中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
福州第一中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福州第一中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與互相垂直,則實數(shù)a的值為()A.-3 B.C. D.32.?dāng)?shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標(biāo)為()A. B.C. D.3.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°4.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.5.江西省重點中學(xué)協(xié)作體于2020年進(jìn)行了一次校際數(shù)學(xué)競賽,共有100名同學(xué)參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯誤的是()A.得分在之間的共有40人B.從這100名參賽者中隨機選取1人,其得分在的概率為0.5C.這100名參賽者得分的中位數(shù)為65D.可求得6.已知函數(shù)的定義域為,若,則()A. B.C. D.7.已知圓C的方程為,點P在圓C上,O是坐標(biāo)原點,則的最小值為()A.3 B.C. D.8.若,則x的值為()A.4 B.6C.4或6 D.89.已知等差數(shù)列且,則數(shù)列的前13項之和為()A.26 B.39C.104 D.5210.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對11.在某市第一次全民核酸檢測中,某中學(xué)派出了8名青年教師參與志愿者活動,分別派往2個核酸檢測點,每個檢測點需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數(shù)為()A.20 B.14C.12 D.612.橢圓離心率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面直角坐標(biāo)系內(nèi)動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________14.若正四棱柱的底面邊長為5,側(cè)棱長為4,則此正四棱柱的體積為______15.直線l交橢圓于A,B兩點,線段AB的中點為,直線是線段AB的垂直平分線,若,D為垂足,則D點的軌跡方程是______16.若橢圓W:的離心率是,則m=___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的一個頂點為,離心率為,直線與橢圓交于不同的兩點M,N(1)求橢圓的標(biāo)準(zhǔn)方程;(2)當(dāng)?shù)拿娣e為時,求的值18.(12分)已知首項為1的等比數(shù)列,滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和19.(12分)已知函數(shù).(1)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式:.20.(12分)如圖在直三棱柱中,為的中點,為的中點,是中點,是與的交點,是與的交點.(1)求證:;(2)求證:平面;(3)求直線與平面的距離.21.(12分)已知正項數(shù)列的首項為,且滿足,(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項和22.(10分)已知動點M到點F(0,)的距離與它到直線的距離相等(1)求動點M的軌跡C的方程;(2)過點P(,-1)作C的兩條切線PA,PB,切點分別為A,B,求直線AB的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)給定條件利用兩條直線互相垂直的關(guān)系列式計算作答.【詳解】因直線與互相垂直,則,解得,所以實數(shù)a的值為.故選:C2、A【解析】設(shè),計算出重心坐標(biāo)后代入歐拉方程,再求出外心坐標(biāo),根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標(biāo)公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當(dāng),時,重合,舍去頂點的坐標(biāo)是故選:A【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.3、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A4、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A5、C【解析】根據(jù)給定的頻率分布直方圖,結(jié)合直方圖的性質(zhì),逐項計算,即可求解.【詳解】由頻率分布直方圖,可得A中,得分在之間共有人,所以A正確;B中,從100名參賽者中隨機選取1人,其得分在中的概率為,所以B正確;D中,由頻率分布直方圖的性質(zhì),可得,解得,所以D正確.C中,前2個小矩形面積之和為0.4,前3個小矩形面積之和為0.7,所以中位數(shù)在[60,70],這100名參賽者得分的中位數(shù)為,所以C不正確;故選:C.6、D【解析】利用導(dǎo)數(shù)的定義可求得的值.【詳解】由導(dǎo)數(shù)的定義可得.故選:D.7、B【解析】化簡判斷圓心和半徑,利用圓的性質(zhì)判斷連接線段OC,交圓于點P時最小,再計算求值即得結(jié)果.【詳解】化簡得圓C的標(biāo)準(zhǔn)方程為,故圓心是,半徑,則連接線段OC,交圓于點P時最小,因為原點到圓心的距離,故此時.故選:B.8、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C9、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項之和為,故選:A10、C【解析】根據(jù)目標(biāo)式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C11、B【解析】分(甲乙)、(丙丁)再同一組和不在同一組兩種情況討論,按照分類、分步計數(shù)原理計算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙丁)不在同一組,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個核酸檢測點,則有種,綜上可得一共有種安排方法,故選:B12、C【解析】將方程轉(zhuǎn)化為橢圓的標(biāo)準(zhǔn)方程,求得a,c,再由離心率公式求得答案.【詳解】解:由得,所以,則,所以橢圓的離心率,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:14、100【解析】根據(jù)棱柱體積公式直接可得.【詳解】故答案為:10015、【解析】設(shè)直線l的方程為,代入橢圓方程并化簡,然后根據(jù)M為線段AB的中點結(jié)合根與系數(shù)的關(guān)系得到k,t間的關(guān)系,進(jìn)而寫出線段AB的垂直平分線的直線方程,可以判斷它過定點E,再考慮直線l的斜率不存在的情況,根據(jù)題意可知,點D在以O(shè)E為直徑的圓上,最后求出點D的軌跡方程.【詳解】設(shè)直線l的方程為,代入橢圓方程并化簡得:,設(shè),則,解得.因為直線是線段AB的垂直平分線,故直線:,即:令,此時,,于是直線過定點當(dāng)直線l的斜率不存在時,,直線也過定點點D在以O(shè)E為直徑的圓上,則圓心為,半徑,所以點D軌跡方程為:16、或【解析】按照橢圓的焦點在軸和在軸上兩種情況分別求解,可得所求結(jié)果【詳解】①當(dāng)橢圓的焦點在軸上時,則有,由題意得,解得②當(dāng)橢圓的焦點在軸上時,則有,由題意得,解得綜上可得或故答案為或【點睛】解答本題的關(guān)鍵有兩個:一個是注意分類討論思想方法的運用,注意橢圓焦點所在的位置;二是解題時要分清橢圓方程中各個參數(shù)的幾何意義,然后再根據(jù)離心率的定義求解三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由橢圓的一個頂點為,得到,再由橢圓的離心率為,求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程;(2)由橢圓的對稱性得到,聯(lián)立方程組求得,根據(jù)的面積為,列出方程,即可求解.【小問1詳解】解:由題意,橢圓的一個頂點為,可得,又由橢圓的離心率為,可得,所以,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:設(shè),且根據(jù)橢圓的對稱性得,聯(lián)立方程組,整理得,解得,因為的面積為,可得,解得.18、(1)(2)【解析】(1)根據(jù)已知條件求得數(shù)列的公比,由此求得.(2)利用錯位相減求和法求得.【小問1詳解】設(shè)等比數(shù)列的公比為,由,可得.故數(shù)列是以1為首項,3為公比的等比數(shù)列,所以【小問2詳解】由(1)得,,①,②①②,得所以19、(1);(2)答案見解析.【解析】(1)由題設(shè)可得,進(jìn)而可知在恒成立,即可求參數(shù)范圍.(2)題設(shè)不等式等價于,討論的大小并根據(jù)一元二次不等式的解法求解集即可.【小問1詳解】當(dāng)時,得,即.由,則,∴,即,∴,即,∴實數(shù)的取值范圍是.【小問2詳解】由,即,即.①當(dāng)時,不等式解集為;②當(dāng)時,不等式的解集為;③當(dāng)時,不等式的解集為.綜上,當(dāng)時﹐不等式的解集為;當(dāng)時,不等式的解集為﹔當(dāng)時,不等式的解集為.20、(1)證明見解析(2)證明見解析(3)【解析】(1)法一:通過建立空間直角坐標(biāo)系,運用向量數(shù)量積證明,法二:通過線面垂直證明,法三:根據(jù)三垂線證明;(2)法一:通過建立空間直角坐標(biāo)系,運用向量數(shù)量積證明,法二:通過面面平行證明線面平行;(3)法一:通過建立空間直角坐標(biāo)系,運用向量方法求解,法二:運用等體積法求解.【小問1詳解】證明:法一:在直三棱柱中,因為,以點為坐標(biāo)原點,方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.因為,所以,所以所以,所以.法二:連接,在直三棱柱中,有面,面,所以,又,則,因為,所以面因為面,所以因為,所以四邊形為正方形,所以因為,所以面因為面,所以.法三:用三垂線定理證明:連接,在直三棱柱中,有面因為面,所以,又,則,因為,所以面所以在平面內(nèi)的射影為,因為四邊形為正方形,所以,因此根據(jù)三垂線定理可知【小問2詳解】證明:法一:因為為的中點,為的中點,為中點,是與的交點,所以、,依題意可知為重心,則,可得所以,,設(shè)為平面的法向量,則即取得則平面的一個法向量為.所以,則,因為平面,所以平面.法二:連接.在正方形中,為的中點,所以且,所以四邊形是平行四邊形,所以又為中點,所以四邊形是矩形,所以且因為且,所以,所以四邊形為平行四邊形,所以.因為,平面平面平面平面,所以平面平面,平面,所以平面【小問3詳解】法一:由(2)知平面的一個法向量,且平面,所以到平面的距離與到平面的距離相等,,所以,所以點到平面的距離所以到平面的距離為法二:因為分別為和中點,所以為的重心,所以,所以到平面的距離是到平面距離的.取中點則,又平面平面,所以平面,所以到平面的距離與到平面的距離相等.設(shè)點到平面的距離為,由得,又,所以,所以到平面的距離是,所以到平面的距離為.21、(1)證明見解析(2)【解析】(1)由遞推關(guān)系式化簡及等比數(shù)列的的定義證明即可;(2)根據(jù)裂項相消法求解即可得解.【小問1詳解】證明:由得,而且,則,即數(shù)列為首項,公比為的等比數(shù)列【小問2詳解】由上可知,所以,22、(1)(2)【解析】(1)根據(jù)拋物線的定義或者直接列式化簡即可求出;(2)方法一:設(shè)切線的方程為:,與拋物線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論