版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省揚州、泰州、淮安、南通、徐州、宿遷、連云港市高二上數(shù)學期末統(tǒng)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.2.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-93.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.4.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓5.過拋物線焦點的直線與拋物線交于兩點,,拋物線的準線與軸交于點,則的面積為()A. B.C. D.6.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.7.“”是“函數(shù)在上無極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.19世紀法國著名數(shù)學家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學,推動了空間幾何學的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.9.已知數(shù)列的通項公式為,則()A.12 B.14C.16 D.1810.以橢圓+=1的焦點為頂點,以這個橢圓的長軸的端點為焦點的雙曲線方程是()A. B.C. D.11.雙曲線的焦距是()A.4 B.C.8 D.12.過坐標原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點為,為上一點,則的最大值為______.14.已知在時有極值0,則的值為____15.寫出一個同時滿足下列條件①②③的圓C的標準方程:__________①圓C的圓心在第一象限;②圓C與x軸相切;③圓C與圓外切16.如圖,圖形中的圓是正方形的內切圓,點E,F(xiàn),G,H為對角線與圓的交點,若向正方形內隨機投入一點,則該點落在陰影部分區(qū)域內的概率為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)解關于的不等式;(Ⅱ)若關于的不等式恒成立,求實數(shù)的取值范圍18.(12分)已知等差數(shù)列滿足;正項等比數(shù)列滿足,,(1)求數(shù)列,的通項公式;(2)數(shù)列滿足,的前n項和為,求的最大值.19.(12分)大學生王蕾利用暑假參加社會實踐,對機械銷售公司月份至月份銷售某種機械配件的銷售量及銷售單價進行了調查,銷售單價和銷售量之間的一組數(shù)據(jù)如表所示:月份銷售單價(元)銷售量(件)(1)根據(jù)至月份數(shù)據(jù),求出關于的回歸直線方程;(2)若剩下的月份的數(shù)據(jù)為檢驗數(shù)據(jù),并規(guī)定由回歸直線方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差不超過元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?(注:,,參考數(shù)據(jù):,)20.(12分)已知關于的不等式(1)若不等式的解集為,求的值(2)若不等式的解集為,求的取值范圍21.(12分)在平面直角坐標系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.22.(10分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意,橢圓的標準方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B2、A【解析】根據(jù)平行直線的性質,結合平行線間距離公式進行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當時,;當時,,故選:A3、B【解析】利用正弦定理,以及大邊對大角,結合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.4、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.5、B【解析】畫出圖形,利用已知條件結合拋物線的定義求解邊長CF,BK,然后求解三角形的面積即可【詳解】如圖,設拋物線的準線為,過作于,過作于,過作于,設,則根據(jù)拋物線的定義可得,,,的面積為,故選:.6、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.7、B【解析】根據(jù)極值的概念,可知函數(shù)在上無極值,則方程的,再根據(jù)充分、必要條件判斷,即可得到結果.【詳解】由題意,可得,若函數(shù)在上無極值,所以對于方程,,解得.所以“”是“函數(shù)在上無極值”的必要不充分條件.故選:B.8、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B9、D【解析】利用給定的通項公式直接計算即得.【詳解】因數(shù)列的通項公式為,則有,所以.故選:D10、B【解析】根據(jù)橢圓的幾何性質求橢圓的焦點坐標和長軸端點坐標,由此可得雙曲線的a,b,c,再求雙曲線的標準方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長軸端點坐標為,,焦點坐標為,,∴雙曲線的焦點在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.11、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎題.12、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以OA為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標原點作直線的垂線,垂足為,可知:落在以OA為直徑的圓上,而以OA為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出點P的坐標,利用兩點間距離公式建立函數(shù)關系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點為,設點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:14、11【解析】由題知,且,所以,得或,①當時,,此時,,所以函數(shù)單調遞增無極值,舍去②當時,,此時,是函數(shù)的極值點,符合題意,∴15、(答案不唯一,但圓心坐標需滿足,)【解析】首先設圓的圓心和半徑,根據(jù)條件得到關于的方程組,即可求解.【詳解】設圓心坐標為,由①可知,半徑為,由②③可知,整理可得,當時,,,所以其中一個同時滿足條件①②③的圓的標準方程是.故答案為:(答案不唯一,但圓心坐標需滿足,)16、【解析】利用幾何概型概率計算公式,計算得所求概率.【詳解】設正方形的邊長為2,則陰影部分的面積為,故若向正方形內隨機投入一點,則該點落在陰影部分區(qū)域內概率為故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點法去絕對值,然后再解不等式.(Ⅱ)將原函數(shù)轉化為分段函數(shù),再結合函數(shù)圖像求得其最小值.將恒成立轉化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點:1絕對值不等式;2恒成立問題;3轉化思想18、(1),(2)8【解析】(1)利用已知的關系把替換成,再把兩式作差后整理即得通項公式,的通項公式可由已知條件建立基本量的方程求解.(2)由的通項公式可判斷,,,當時,所有正項的和即為的最大項的值.小問1詳解】,,兩式相減得所以,又也滿足,故;設等比數(shù)列的公比為,由得,即,因為,即,,(負值舍去),所以【小問2詳解】由題意,,則,,,且當時,所以的最大值是.19、(1)(2)回歸直線方程是理想的【解析】(1)根據(jù)表格數(shù)據(jù)求得,利用最小二乘法可求得回歸直線方程;(2)令回歸直線中的可求得估計數(shù)據(jù),對比檢驗數(shù)據(jù)即可確定結論.小問1詳解】由表格數(shù)據(jù)可知:,,,則,關于的回歸直線方程為;【小問2詳解】令回歸直線中的,則,,(1)中所得到的回歸直線方程是理想的.20、(1);(2)【解析】(1)根據(jù)關于的不等式的解集為,得到和1是方程的兩個實數(shù)根,再利用韋達定理求解.(2)根據(jù)關于的不等式的解集為.又因為,利用判別式法求解.【詳解】(1)因為關于的不等式的解集為,所以和1是方程的兩個實數(shù)根,由韋達定理可得,得(2)因為關于的不等式的解集為因為所以,解得,故的取值范圍為【點睛】本題主要考查一元二次不等式的解集和恒成立問題,還考查了運算求解的能力,屬于中檔題.21、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長,利用橢圓中的關系可以求出橢圓方程;(2)設直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關系,結合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標準方程為.【小問2詳解】由已知可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年四川綿陽市游仙區(qū)人力資源和社會保障局事業(yè)單位招聘工作人員歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇省無錫宜興事業(yè)單位招聘91人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川省廣元市昭化區(qū)部分事業(yè)單位考試招聘15人高頻重點提升(共500題)附帶答案詳解
- 金融服務解決方案招投標模板
- 棚戶區(qū)管網(wǎng)改造工程合同
- 寵物行業(yè)招投標管理規(guī)定
- 大數(shù)據(jù)平臺建設項目招投標協(xié)議
- 高速公路服務區(qū)停電應急預案
- 2024南坊公務員樓房買賣合同含附屬設施裝修及車位購買優(yōu)惠3篇
- 2024年度二零二四年創(chuàng)業(yè)投資輔導與融資服務合同3篇
- 期末試題-2024-2025學年人教PEP版英語六年級上冊 (含答案)
- 2020年甘肅公務員考試申論試題(省級卷)
- 海南省??谑邪四昙壩锢砩蠈W期期末考試試題
- 2024年煙草知識考試題庫
- 病例報告表(樣板)
- 常州大學《數(shù)據(jù)采集與清洗》2021-2022學年期末試卷
- 餐飲服務電子教案 學習任務4 雞尾酒調制
- 定金協(xié)議書范文范本簡單一點
- 幼兒園教育活動設計與指導學習通超星期末考試答案章節(jié)答案2024年
- 2024秋期國家開放大學《政治學原理》一平臺在線形考(形考任務四)試題及答案
- TSG51-2023起重機械安全技術規(guī)程
評論
0/150
提交評論