版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省黃岡市麻城市實驗高中2025屆數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.體育老師記錄了班上10名同學(xué)1分鐘內(nèi)的跳繩次數(shù),得到如下數(shù)據(jù):88,94,96,98,98,99,100,101,101,116.這組數(shù)據(jù)的60%分位數(shù)是()A.98 B.99C.99.5 D.1002.已知,,,下列不等式正確個數(shù)有()①,②,③,④.A.1 B.2C.3 D.43.下列函數(shù)中,最小值是的是()A. B.C. D.4.函數(shù)的零點(diǎn)的個數(shù)為A. B.C. D.5.函數(shù)在區(qū)間(0,1)內(nèi)的零點(diǎn)個數(shù)是A.0 B.1C.2 D.36.函數(shù)f(x)=|x|+(aR)的圖象不可能是()A. B.C. D.7.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則不等式的解集為()A. B.C.( D.8.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c9.定義在R上的偶函數(shù)f(x)滿足,當(dāng)x∈[0,1]時,則函數(shù)在區(qū)間上的所有零點(diǎn)的和為()A.10 B.9C.8 D.610.已知,則的大小關(guān)系為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________12.某公司在甲、乙兩地銷售同一種農(nóng)產(chǎn)品,利潤(單位:萬元)分別為,,其中x為銷售量(單位:噸),若該公司在這兩地共銷售10噸農(nóng)產(chǎn)品,則能獲得的最大利潤為______萬元.13.已知函數(shù)(,且)的圖象恒過定點(diǎn),且點(diǎn)在冪函數(shù)的圖象上,則__________.14.經(jīng)過點(diǎn),且在軸上的截距等于在軸上的截距的2倍的直線的方程是__________15.函數(shù)的遞減區(qū)間是__________.16.已知函數(shù),,若關(guān)于x的方程()恰好有6個不同的實數(shù)根,則實數(shù)λ的取值范圍為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知:,.設(shè)函數(shù)求:(1)的最小正周期;(2)的對稱中心,(3)若,且,求18.設(shè)函數(shù),其中.(1)求函數(shù)的值域;(2)若,討論在區(qū)間上的單調(diào)性;(3)若在區(qū)間上為增函數(shù),求的最大值.19.已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)a的值.20.已知函數(shù)是定義在上的偶函數(shù),且.(1)求實數(shù)的值,并證明;(2)用定義法證明函數(shù)在上增函數(shù);(3)解關(guān)于的不等式.21.在平行四邊形中,過點(diǎn)作的垂線交的延長線于點(diǎn),.連結(jié)交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置.如圖2.證明:直線平面若為的中點(diǎn),為的中點(diǎn),且平面平面求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)分位數(shù)的定義即可求得答案.【詳解】這組數(shù)據(jù)的60%分位數(shù)是.2、D【解析】由于,得,根據(jù)基本不等式對選項一一判斷即可【詳解】因,,,所以,得,當(dāng)且僅當(dāng)時取等號,②對;由,當(dāng)且僅當(dāng)時取等號,①對;由得,所以,當(dāng)且僅當(dāng)時取等號,③對;由,當(dāng)且僅當(dāng)時取等號,④對故選:D3、B【解析】應(yīng)用特殊值及基本不等式依次判斷各選項的最小值是否為即可.【詳解】A:當(dāng),則,,所以,故A不符合;B:由基本不等式得:(當(dāng)且僅當(dāng)時取等號),符合;C:當(dāng)時,,不符合;D:當(dāng)取負(fù)數(shù),,則,,所以,故D不符合;故選:B.4、B【解析】略【詳解】因為函數(shù)單調(diào)遞增,且x=3,y>0,x=1,y<0,所以零點(diǎn)個數(shù)為15、B【解析】,在范圍內(nèi),函數(shù)為單調(diào)遞增函數(shù).又,,,故在區(qū)間存在零點(diǎn),又函數(shù)為單調(diào)函數(shù),故零點(diǎn)只有一個考點(diǎn):導(dǎo)函數(shù),函數(shù)零點(diǎn)6、C【解析】對分類討論,將函數(shù)寫成分段形式,利用對勾函數(shù)的單調(diào)性,逐一進(jìn)行判斷圖象即可.【詳解】,①當(dāng)時,,圖象如A選項;②當(dāng)時,時,,在遞減,在遞增;時,,由,單調(diào)遞減,所以在上單調(diào)遞減,故圖象為B;③當(dāng)時,時,,可得,,在遞增,即在遞增,圖象為D;故選:C.7、C【解析】根據(jù)奇偶性求分段函數(shù)的解析式,然后作出函數(shù)圖象,根據(jù)單調(diào)性解不等式即可.【詳解】因為當(dāng)時,,且函數(shù)是定義在上的奇函數(shù),所以時,,所以,作出函數(shù)圖象:所以函數(shù)是上的單調(diào)遞增,又因為不等式,所以,即,故選:C.8、D【解析】對A,B,C,利用特殊值即可判斷,對D,利用不等式的性質(zhì)即可判斷.【詳解】對A,令a=1,b=-2,此時滿足a>b,但a2<b對B,令a=1,b=-2,此時滿足a>b,但1a>1對C,若c=0,a>b,則ac=bc,故C錯;對D,∵a>b∴a-c>b-c,故D正確.故選:D.9、A【解析】根據(jù)條件可得函數(shù)f(x)的圖象關(guān)于直線x=1對稱;根據(jù)函數(shù)的解析式及奇偶性,對稱性可得出函數(shù)f(x)在的圖象;令,畫出其圖象,進(jìn)而得出函數(shù)的圖象.根據(jù)函數(shù)圖象及其對稱性,中點(diǎn)坐標(biāo)公式即可得出結(jié)論【詳解】因為定義在R上的偶函數(shù)f(x)滿足,所以函數(shù)f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[0,1]時,,可以得出函數(shù)f(x)在上的圖象,進(jìn)而得出函數(shù)f(x)在的圖象.畫出函數(shù),的圖象;令,可得周期T1,畫出其圖象,進(jìn)而得出函數(shù)的圖象由圖象可得:函數(shù)在區(qū)間上共有10個零點(diǎn),即5對零點(diǎn),每對零點(diǎn)的中點(diǎn)都為1,所以所有零點(diǎn)的和為.故選:A10、B【解析】先對三個數(shù)化簡,然后利用指數(shù)函數(shù)的單調(diào)性判斷即可【詳解】,,,因為在上為增函數(shù),且,所以,所以,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】由已知得,所以則,故答案.12、34【解析】設(shè)公司在甲地銷售農(nóng)產(chǎn)品噸,則在乙地銷售農(nóng)產(chǎn)品噸,根據(jù)利潤函數(shù)表示出利潤之和,利用配方法求出函數(shù)的最值即可【詳解】設(shè)公司在甲地銷售農(nóng)產(chǎn)品()噸,則在乙地銷售農(nóng)產(chǎn)品噸,,利潤為,又且故當(dāng)時,能獲得的最大利潤為34萬元故答案為:34.13、【解析】先求出定點(diǎn)的坐標(biāo),再代入冪函數(shù),即可求出解析式.【詳解】令可得,此時,所以函數(shù)(,且)的圖象恒過定點(diǎn),設(shè)冪函數(shù),則,解得,所以,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵點(diǎn)是利用指數(shù)函數(shù)的性質(zhì)和圖象的特點(diǎn)得出,設(shè)冪函數(shù),代入即可求得,.14、或【解析】設(shè)所求直線方程為,將點(diǎn)代入上式可得或.考點(diǎn):直線的方程15、【解析】先求出函數(shù)的定義域,再根據(jù)復(fù)合函數(shù)單調(diào)性“同增異減”原則求出函數(shù)的單調(diào)遞減區(qū)間即可得出答案【詳解】解:意可知,解得,所以的定義域是,令,對稱軸是,在上是增函數(shù),在是減函數(shù),又在定義域上是增函數(shù),是和的復(fù)合函數(shù),的單調(diào)遞減區(qū)間是,故答案為:【點(diǎn)睛】本題主要考查對數(shù)型復(fù)合函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題16、【解析】令,則方程轉(zhuǎn)化為,可知可能有個不同解,二次函數(shù)可能有個不同解,由恰好有6個不同的實數(shù)根,可得有2個不同的實數(shù)根,有3個不同的實數(shù)根,則,然后根據(jù),,分3種情況討論即可得答案.【詳解】解:令,則方程轉(zhuǎn)化為,畫出的圖象,如圖可知可能有個不同解,二次函數(shù)可能有個不同解,因為恰好有6個不同的實數(shù)根,所以有2個不同的實數(shù)根,有3個不同的實數(shù)根,則,因為,解得,,解得,所以,,每個方程有且僅有兩個不相等的實數(shù)解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,綜上,實數(shù)λ的取值范圍為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(k∈Z);(3)或.【解析】(1)解:由題意,,(1)函數(shù)的最小正周期為;(2),得,所以對稱中心;(3)由題意,,得或,所以或點(diǎn)睛:本題考查三角函數(shù)的恒等關(guān)系的綜合應(yīng)用.本題中,由向量的數(shù)量積,同時利用三角函數(shù)化簡的基本方法,得到,利用三角函數(shù)的性質(zhì),求出周期、對稱中心等18、(1)(2)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減(3)【解析】(1)首先化簡函數(shù),再求函數(shù)的值域;(2)利用代入法,求的范圍,再結(jié)合函數(shù)的性質(zhì),即可求解函數(shù)的單調(diào)性;(3)由(1)可知,,首先求的范圍,再根據(jù)函數(shù)的單調(diào)區(qū)間,求的最大值.【小問1詳解】,所以函數(shù)的值域是;【小問2詳解】時,,當(dāng),,當(dāng),即時,函數(shù)單調(diào)遞增,當(dāng),即時,函數(shù)單調(diào)遞減,所以函數(shù)的單調(diào)遞增區(qū)間是,函數(shù)的單調(diào)遞減區(qū)間是;【小問3詳解】若,則,若函數(shù)在區(qū)間上為增函數(shù),則,解得:,所以的最大值是.19、(1)減區(qū)間為,增區(qū)間為;;(2).【解析】(1)設(shè),,,則,,根據(jù)函數(shù)的性質(zhì),可得單調(diào)性,根據(jù)單調(diào)性可得值域;(2)根據(jù)單調(diào)性求出函數(shù)在上的值域,再根據(jù)的值域是的值域的子集列式可解得結(jié)果.【詳解】(1),設(shè),,,則,,由已知性質(zhì)得,當(dāng),即時,單調(diào)遞減,所以減區(qū)間為;當(dāng),即時,單調(diào)遞增,所以增區(qū)間為;由,,,得的值域為;(2)因為為減函數(shù),故函數(shù)在上的值域為.由題意,得的值域是的值域的子集,所以,所以.【點(diǎn)睛】本題考查了對勾函數(shù)的單調(diào)性,考查了利用函數(shù)的單調(diào)性求值域,考查了轉(zhuǎn)化化歸思想,屬于中檔題.20、(1),證明見解析(2)證明見解析(3)【解析】(1)由偶函數(shù)性質(zhì)求,由列方程求,再證明;(2)利用單調(diào)性定義證明函數(shù)的單調(diào)性;(3)利用函數(shù)的性質(zhì)化簡可求.【小問1詳解】因為函數(shù)是定義在R上的偶函數(shù)∴,綜上,從而【小問2詳解】證明:因為設(shè),所以又,∴所以∴在上為增函數(shù);【小問3詳解】∵.∵偶函數(shù)在上為增函數(shù).在上為減函數(shù)∴21、(1)見解析;(2)【解析】(1)在平面圖形內(nèi)找到,則在立體圖形中,可證面.(2)解法一:根據(jù)平面平面,得到平面,得到到平面的距離,根據(jù)平面圖形求出底面平的面積,求得三棱錐的體積.解法二:找到三棱錐的體積與四棱錐的體積之間的關(guān)系比值關(guān)系,先求四棱錐的體積,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年智能消防系統(tǒng)建設(shè)合同2篇
- 2024版醫(yī)療器械生產(chǎn)許可證轉(zhuǎn)讓范本合同3篇
- 2024年度食堂火災(zāi)保險合同3篇
- 2024年度健身服務(wù)合同:某健身俱樂部健身服務(wù)合同2篇
- 2024年度火鍋店衛(wèi)生潔具選購與安裝合同3篇
- 2024版二手房買賣貸款全面保障服務(wù)合同3篇
- 2024年度船舶抵押反擔(dān)保合同示范3篇
- 2024年度電動車充電設(shè)施安裝合同2篇
- 2024年度美麗鄉(xiāng)村建設(shè)樹苗采購與種植指導(dǎo)合同3篇
- 2024年度新型城鎮(zhèn)化規(guī)劃編制委托代建合同范本3篇
- 大學(xué)生勞動實踐清單(本科收藏版)
- 西屋破壁機(jī)料理機(jī)使用說明
- 2023年建筑工程施工質(zhì)量驗收規(guī)范檢驗批填寫全套表格示范填寫與說明
- 特種設(shè)備運(yùn)行故障和事故記錄表
- 骨與軟組織腫瘤的冷凍消融治療
- 對外漢語教學(xué)法知到章節(jié)答案智慧樹2023年西北師范大學(xué)
- 政治角度看“淄博燒烤”+課件【高效備課精研+知識精講提升】 高考政治二輪復(fù)習(xí)人教版
- 社區(qū)社會工作智慧樹知到答案章節(jié)測試2023年山東女子學(xué)院
- 2023年黑龍江中醫(yī)藥大學(xué)附屬第一醫(yī)院招聘護(hù)理人員12人筆試備考試題及答案解析
- 工藝變更履歷表
- 創(chuàng)踐-大學(xué)生創(chuàng)新創(chuàng)業(yè)實務(wù)智慧樹知到答案章節(jié)測試2023年
評論
0/150
提交評論