版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省溫州市鹿城區(qū)溫州市實驗中學2023-2024學年中考數(shù)學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:92.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.3.方程有兩個實數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<14.下列運算正確的是()A.a4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b35.一個幾何體的俯視圖如圖所示,其中的數(shù)字表示該位置上小正方體的個數(shù),那么這個幾何體的主視圖是()A. B. C. D.6.下列運算正確的是()A.a2?a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a7.若a=,則實數(shù)a在數(shù)軸上對應的點的大致位置是()A.點E B.點F C.點G D.點H8.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為()A. B. C. D.9.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.10.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數(shù)是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個11.如圖,等腰直角三角板ABC的斜邊AB與量角器的直徑重合,點D是量角器上60°刻度線的外端點,連接CD交AB于點E,則∠CEB的度數(shù)為()A.60° B.65° C.70° D.75°12.如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內.現(xiàn)向正方形內隨機投擲小球(假設小球落在正方形內每一點都是等可能的),經過大量重復投擲試驗,發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計不規(guī)則區(qū)域的面積約為()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.當x為_____時,分式的值為1.14.如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.15.分解因式:4ax2-ay2=________________.16.已知,那么__.17.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.18.如圖,身高1.6米的小麗在陽光下的影長為2米,在同一時刻,一棵大樹的影長為8米,則這棵樹的高度為_____米.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)近年來,新能源汽車以其舒適環(huán)保、節(jié)能經濟的優(yōu)勢受到熱捧,隨之而來的就是新能汽車銷量的急速增加,當前市場上新能漂汽車從動力上分純電動和混合動力兩種,從用途上又分為乘用式和商用式兩種,據中國汽車工業(yè)協(xié)會提供的信息,2017年全年新能源乘用車的累計銷量為57.9萬輛,其中,純電動乘用車銷量為46.8萬輛,混合動力乘用車銷量為11.1萬輛;2017年全年新能源商用車的累計銷量為19.8萬輛,其中,純電動商用車銷量為18.4萬輛,混合動力商用車銷量為1.4萬輛,請根據以上材料解答下列問題:(1)請用統(tǒng)計表表示我國2017年新能源汽車各類車型銷量情況;(2)小穎根據上述信息,計算出2017年我國新能源各類車型總銷量為77.7萬輛,并繪制了“2017年我國新能源汽車四類車型銷量比例”的扇形統(tǒng)計圖,如圖1,請你將該圖補充完整(其中的百分數(shù)精確到0.1%);(3)2017年我國新能源乘用車銷量最高的十個城市排名情況如圖2,請根據圖2中信息寫出這些城市新能源乘用車銷售情況的特點(寫出一條即可);(4)數(shù)據顯示,2018年1~3月的新能源乘用車總銷量排行榜上位居前四的廠家是比亞迪、北汽、上汽、江準,參加社會實踐的大學生小王想對其中兩個廠家進行深入調研,他將四個完全相同的乒乓球進行編號(用“1,2,3,4”依次對應上述四個廠家),并將乒乓球放入不透明的袋子中攪勻,從中一次拿出兩個乒乓球,根據乒乓球上的編號決定要調研的廠家.求小王恰好調研“比亞迪”和“江淮”這兩個廠家的概率.20.(6分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.21.(6分)經過校園某路口的行人,可能左轉,也可能直行或右轉.假設這三種可能性相同,現(xiàn)有小明和小亮兩人經過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.22.(8分)(1)如圖1,在矩形ABCD中,點O在邊AB上,∠AOC=∠BOD,求證:AO=OB;(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點A,OP與⊙O相交于點C,連接CB,∠OPA=40°,求∠ABC的度數(shù).23.(8分)如圖,在△ABC中,AB=AC,∠BAC=120°,EF為AB的垂直平分線,交BC于點F,交AB于點E.求證:FC=2BF.24.(10分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學生的總人數(shù)是人,扇形C的圓心角是°;補全頻數(shù)直方圖;該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?25.(10分)解方程(2x+1)2=3(2x+1)26.(12分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數(shù)據求出DE的長度.(結果保留根號)27.(12分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.2、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.3、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.4、B【解析】分析:根據合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質,逐一計算判斷即可.詳解:根據同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質,熟記并靈活運用是解題關鍵.5、A【解析】
一一對應即可.【詳解】最左邊有一個,中間有兩個,最右邊有三個,所以選A.【點睛】理解立體幾何的概念是解題的關鍵.6、C【解析】
根據同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項,關鍵是掌握計算法則.7、C【解析】
根據被開方數(shù)越大算術平方根越大,可得答案.【詳解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故選:C.【點睛】本題考查了實數(shù)與數(shù)軸,利用被開方數(shù)越大算術平方根越大得出3<<4是解題關鍵.8、A【解析】
根據等腰直角三角形的性質可得出2S2=S1,根據數(shù)的變化找出變化規(guī)律“Sn=()n﹣2”,依此規(guī)律即可得出結論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質、勾股定理,解題的關鍵是利用圖形找出規(guī)律“Sn=()n﹣2”.9、B【解析】
根據幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進行分析,即可得出答案.【詳解】左視圖是從左往右看,左側一列有2層,右側一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.10、C【解析】
①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標的性質、三角形的面積求法、相似三角形的性質和判定、平行線等分線段定理、函數(shù)圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數(shù)形結合的數(shù)學思想方法.11、D【解析】
解:連接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故選:D12、D【解析】
首先確定小石子落在不規(guī)則區(qū)域的概率,然后利用概率公式求得其面積即可.【詳解】∵經過大量重復投擲試驗,發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,∴小石子落在不規(guī)則區(qū)域的概率為0.65,∵正方形的邊長為4m,∴面積為16m2設不規(guī)則部分的面積為sm2則=0.65解得:s=10.4故答案為:D.【點睛】利用頻率估計概率.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
分式的值是1的條件是,分子為1,分母不為1.【詳解】∵3x-6=1,
∴x=2,
當x=2時,2x+1≠1.
∴當x=2時,分式的值是1.
故答案為2.【點睛】本題考查的知識點是分式為1的條件,解題關鍵是注意的是分母不能是1.14、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質,勾股定理,兩點之間線段最短的性質.得出動點P所在的位置是解題的關鍵.15、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.16、【解析】
根據比例的性質,設x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設x=5a,則y=2a,那么.故答案為:.【點睛】本題主要考查了比例的性質,根據比例式用同一個未知數(shù)得出的值進而求解是解題關鍵.17、【解析】
把(1,4)代入兩函數(shù)表達式可得:a+b=4,再根據“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.18、6.4【解析】
根據平行投影,同一時刻物長與影長的比值固定即可解題.【詳解】解:由題可知:,解得:樹高=6.4米.【點睛】本題考查了投影的實際應用,屬于簡單題,熟悉投影概念,列比例式是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)統(tǒng)計表見解析;(2)補全圖形見解析;(3)總銷量越高,其個人購買量越大;(4).【解析】
(1)認真讀題,找到題目中的相關信息量,列表統(tǒng)計即可;(2)分別求出“混動乘用”和“純電動商用”的圓心角的度數(shù),然后補扇形圖即可;(3)根據圖表信息寫出一個符合條件的信息即可;(4)利用樹狀圖確定求解概率.【詳解】(1)統(tǒng)計表如下:2017年新能源汽車各類型車型銷量情況(單位:萬輛)類型純電動混合動力總計新能源乘用車46.811.157.9新能源商用車18.41.419.8(2)混動乘用:×100%≈14.3%,14.3%×360°≈51.5°,純電動商用:×100%≈23.7%,23.7%×360°≈85.3°,補全圖形如下:(3)總銷量越高,其個人購買量越大.(4)畫樹狀圖如下:∵一共有12種等可能的情況數(shù),其中抽中1、4的情況有2種,∴小王恰好調研“比亞迪”和“江淮”這兩個廠家的概率為=.【點睛】此題主要考查了數(shù)據的分析,利用統(tǒng)計表和扇形統(tǒng)計圖表示數(shù)據的關系,以及用列表法或樹狀圖法求概率,難度一般,注意認真閱讀題目信息是關鍵.20、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】
(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達式,根據二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設拋物線C1的表達式為(),把C(0,)代入可得,.∴C1的表達式為:,即.設P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴當時,S△PBC最大值為.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴討論∠BMD=90°和∠BDM=90°兩種情況:當∠BMD=90°時,BM2+DM2=BD2,即+=,解得:,(舍去).當∠BDM=90°時,BD2+DM2=BM2,即+=,解得:,(舍去).綜上所述,或時,△BDM為直角三角形.21、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結果數(shù),找出“至少有一人直行”的結果數(shù),然后根據概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數(shù),其中兩人之中至少有一人直行的結果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.22、(1)證明見解析;(2)25°.【解析】試題分析:(1)根據等量代換可求得∠AOD=∠BOC,根據矩形的對邊相等,每個角都是直角,可知∠A=∠B=90°,AD=BC,根據三角形全等的判定AAS證得△AOD≌△BOC,從而得證結論.(2)利用切線的性質和直角三角形的兩個銳角互余的性質得到圓心角∠POA的度數(shù),然后利用圓周角定理來求∠ABC的度數(shù).試題解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四邊形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直徑,PA與相切于點A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB,∴.23、見解析【解析】
連接AF,結合條件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性質可得到AF=BF=CF,可證得結論.【詳解】證明:連接AF,∵EF為AB的垂直平分線,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【點睛】本題主要考查垂直平分線的性質及等腰三角形的性質,掌握線段垂直平分線上的點到線段兩端點的距離相等是解題的關鍵.24、(1)300、144;(2)補全頻數(shù)分布直方圖見解析;(3)該校創(chuàng)新意識不強的學生約有528人.【解析】
(1)由D組頻數(shù)及其所占比例可得總人數(shù),用360°乘以C組人數(shù)所占比例可得;
(2)用總人數(shù)分別乘以A、B組的百分比求得其人數(shù),再用總人數(shù)減去A、B、C、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年租賃服務中介合同
- 2024版公司注冊地租賃協(xié)議樣本版B版
- 2024新能源電池生產與研發(fā)合作合同
- 2024年貨物供應保管合同
- 2024年株洲房產買賣協(xié)議模板3篇
- 2024年物資供應與支付保證協(xié)議
- 2025年度水電站節(jié)能減排與承包經營協(xié)議3篇
- 二零二五年度大清包貨物運輸合同范本2篇
- 二零二五年度商鋪租賃合同終止與續(xù)簽交接清單3篇
- 戶外游戲托班課程設計
- 《滅火應急疏散預案》課件
- 【高分復習筆記】孫廣仁《中醫(yī)基礎理論》(第9版)筆記與考研真題詳解
- 造影劑過敏的護理
- 開題報告:高質量數(shù)字教材建設機制及政策研究
- PE工程師工作總結
- 以案促改心得體會
- 華東師范大學《法學導論(Ⅰ)》2023-2024學年第一學期期末試卷
- 空壓機操作安全培訓
- 自然辯證法論述題146題帶答案(可打印版)
- 工程施工日志60篇
- 特殊作業(yè)安全管理監(jiān)護人專項培訓課件
評論
0/150
提交評論