鎮(zhèn)江市屬學校2024屆中考數(shù)學模試卷含解析_第1頁
鎮(zhèn)江市屬學校2024屆中考數(shù)學模試卷含解析_第2頁
鎮(zhèn)江市屬學校2024屆中考數(shù)學模試卷含解析_第3頁
鎮(zhèn)江市屬學校2024屆中考數(shù)學模試卷含解析_第4頁
鎮(zhèn)江市屬學校2024屆中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

鎮(zhèn)江市屬學校2024屆中考數(shù)學模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC2.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),如[4]=4,[]=1,[﹣2.5]=﹣3.現(xiàn)對82進行如下操作:82[]=9[]=3[]=1,這樣對82只需進行3次操作后變?yōu)?,類似地,對121只需進行多少次操作后變?yōu)?()A.1 B.2 C.3 D.43.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.4.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米5.到三角形三個頂點的距離相等的點是三角形()的交點.A.三個內(nèi)角平分線 B.三邊垂直平分線C.三條中線 D.三條高6.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣17.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°8.若正多邊形的一個內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.189.如圖,扇形AOB中,OA=2,C為弧AB上的一點,連接AC,BC,如果四邊形AOBC為菱形,則圖中陰影部分的面積為()A. B. C. D.10.在正方體的表面上畫有如圖1中所示的粗線,圖2是其展開圖的示意圖,但只在A面上畫有粗線,那么將圖1中剩余兩個面中的粗線畫入圖2中,畫法正確的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點,在二次函數(shù)的圖象上,若,則__________.(填“”“”“”)12.已知x3=y13.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.14.矩形紙片ABCD中,AB=3cm,BC=4cm,現(xiàn)將紙片折疊壓平,使A與C重合,設折痕為EF,則重疊部分△AEF的面積等于_____.15.如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,那么cos∠EFC的值是.16.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.三、解答題(共8題,共72分)17.(8分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.18.(8分)如圖,平面直角坐標系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設P(1,n).求直線AB的解析式和點B的坐標;求△ABP的面積(用含n的代數(shù)式表示);當S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.19.(8分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,求k的取值范圍.20.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.21.(8分)如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當∠B=時,四邊形OCAD是菱形;②當∠B=時,AD與相切.22.(10分)已知點P,Q為平面直角坐標系xOy中不重合的兩點,以點P為圓心且經(jīng)過點Q作⊙P,則稱點Q為⊙P的“關聯(lián)點”,⊙P為點Q的“關聯(lián)圓”.(1)已知⊙O的半徑為1,在點E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關聯(lián)點”為______;(2)若點P(2,0),點Q(3,n),⊙Q為點P的“關聯(lián)圓”,且⊙Q的半徑為,求n的值;(3)已知點D(0,2),點H(m,2),⊙D是點H的“關聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點A,B.若線段AB上存在⊙D的“關聯(lián)點”,求m的取值范圍.23.(12分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數(shù)表達式.24.如圖,一條公路的兩側互相平行,某課外興趣小組在公路一側AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結果精確到0.1米,參考數(shù)據(jù):≈1.73)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【點睛】本題考查作圖—復雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).2、C【解析】分析:[x]表示不大于x的最大整數(shù),依據(jù)題目中提供的操作進行計算即可.詳解:121∴對121只需進行3次操作后變?yōu)?.故選C.點睛:本題是一道關于無理數(shù)的題目,需要結合定義的新運算和無理數(shù)的估算進行求解.3、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關鍵.4、D【解析】

在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.5、B【解析】試題分析:根據(jù)線段垂直平分線上的點到兩端點的距離相等解答.解:到三角形三個頂點的距離相等的點是三角形三邊垂直平分線的交點.故選B.點評:本題考查了線段垂直平分線上的點到兩端點的距離相等的性質(zhì),熟記性質(zhì)是解題的關鍵.6、B【解析】

根據(jù)相反數(shù)的的定義解答即可.【詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【點睛】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關鍵.7、A【解析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內(nèi)角與外角;三角形內(nèi)角和定理.8、B【解析】設多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.9、D【解析】連接OC,過點A作AD⊥CD于點D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,可得∠AOC=∠BOC=60°,故△ACO與△BOC為邊長相等的兩個等邊三角形,再根據(jù)銳角三角函數(shù)的定義得出AD=OA?sin60°=2×=,因此可求得S陰影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故選D.點睛:本題考查的是扇形面積的計算,熟記扇形的面積公式及菱形的性質(zhì)是解答此題的關鍵.10、A【解析】

解:可把A、B、C、D選項折疊,能夠復原(1)圖的只有A.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】拋物線的對稱軸為:x=1,∴當x>1時,y隨x的增大而增大.∴若x1>x2>1

時,y1>y2

.故答案為>12、7【解析】

由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點睛】本題考查了分式的化簡求值.13、2【解析】

將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.14、7516【解析】試題分析:要求重疊部分△AEF的面積,選擇AF作為底,高就等于AB的長;而由折疊可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代換后,可知AE=AF,問題轉(zhuǎn)化為在Rt△ABE中求AE.因此設AE=x,由折疊可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=258,即AE=AF=25因此可求得S△AEF=12×AF×AB=12×考點:翻折變換(折疊問題)15、.【解析】試題分析:根據(jù)翻轉(zhuǎn)變換的性質(zhì)得到∠AFE=∠D=90°,AF=AD=5,根據(jù)矩形的性質(zhì)得到∠EFC=∠BAF,根據(jù)余弦的概念計算即可.由翻轉(zhuǎn)變換的性質(zhì)可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案為:.考點:軸對稱的性質(zhì),矩形的性質(zhì),余弦的概念.16、110°.【解析】

解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.三、解答題(共8題,共72分)17、(1);(2),;(3)【解析】試題分析:(1)根據(jù)反比例函數(shù)圖象上點的坐標特征易得k=2;(2)作BH⊥AD于H,如圖1,根據(jù)反比例函數(shù)圖象上點的坐標特征確定B點坐標為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數(shù)圖象上,可設M點坐標為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標為t,利用一次函數(shù)圖象上點的坐標特征得到N點坐標為(t,t﹣1),則MN=﹣t+1,根據(jù)三角形面積公式得到S△CMN=?t?(﹣t+1),再進行配方得到S=﹣(t﹣)2+(0<t<2),最后根據(jù)二次函數(shù)的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數(shù)解析式y(tǒng)=,得a=2,∴B點坐標為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標為(0,﹣1),設直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設M點坐標為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標為t,∴N點坐標為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當t=時,S有最大值,最大值為.18、(1)AB的解析式是y=-x+1.點B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標;(2)過點A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當y=0時,0=-x+1,解得x=3,∴點B(3,0).(2)過點A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點B(3,0),可知點B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當S△ABP=2時,n-1=2,解得n=2,∴點P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點C作CN⊥直線x=1于點N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點C作CF⊥x軸于點F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點C的坐標是(3,4)或(5,2)或(3,2).考點:一次函數(shù)綜合題.19、0≤k≤且k≠1.【解析】

根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可求出k的取值范圍.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范圍為0≤k≤且k≠1.【點睛】本題考查了根的判別式、二次根式以及一元二次方程的定義,根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,列出關于k的一元一次不等式組是解題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.20、(1)見解析(2)6【解析】

(1)利用對應兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:21、(1)證明見解析;(2)①30°,②45°【解析】試題分析:(1)根據(jù)已知條件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根據(jù)三角形內(nèi)角和定理得出∠AOC=∠OAD,從而證得OC∥AD,即可證得結論;

(2)①若四邊形OCAD是菱形,則OC=AC,從而證得OC=OA=AC,得出∠即可求得

②AD與相切,根據(jù)切線的性質(zhì)得出根據(jù)AD∥OC,內(nèi)錯角相等得出從而求得試題解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四邊形OCAD是平行四邊形;(2)①∵四邊形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案為②∵AD與相切,∴∵AD∥OC,∴∴故答案為22、(1)F,M;(1)n=1或﹣1;(3)≤m≤或≤m≤.【解析】

(1)根據(jù)定義,認真審題即可解題,(1)在直角三角形PHQ中勾股定理解題即可,(3)當⊙D與線段AB相切于點T時,由sin∠OBA=,得DT=DH1=,進而求出m1=即可,②當⊙D過點A時,連接AD.由勾股定理得DA==DH1=即可解題.【詳解】解:(1)∵OF=OM=1,∴點F、點M在⊙上,∴F、M是⊙O的“關聯(lián)點”,故答案為F,M.(1)如圖1,過點Q作QH⊥x軸于H.∵PH=1,QH=n,PQ=.∴由勾股定理得,PH1+QH1=PQ1,即11+n1=()1,解得,n=1或﹣1.(3)由y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論