版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省衡陽市衡陽縣第三中學2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若等差數(shù)列,其前n項和為,,,則()A.10 B.12C.14 D.162.命題“,”的否定為()A., B.,C., D.,3.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.164.下列命題中的假命題是()A.,B.存在四邊相等的四邊形不是正方形C.“存在實數(shù),使”的否定是“不存在實數(shù),使”D.若且,則,至少有一個大于5.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區(qū)域的面積為()A. B.C. D.7.已知命題,命題,,則下列命題中為真命題的是A. B.C. D.8.已知向量,則()A.5 B.6C.7 D.89.古希臘數(shù)學家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關系是()A.相交 B.相離C.內(nèi)切 D.外切10.南宋數(shù)學家楊輝在《詳解九章算術法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23,則該數(shù)列的第31項為()A.336 B.467C.483 D.60111.在中,a,b,c分別為角A,B,C的對邊,已知,,的面積為,則()A. B.C. D.12.已知拋物線的焦點為F,準線為l,點P在拋物線上,直線PF交x軸于Q點,且,則點P到準線l的距離為()A.4 B.5C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.若將拋擲一枚硬幣所出現(xiàn)的結(jié)果“正面(朝上)”與“反面(朝上)”,分別記為H、T,相應的拋擲兩枚硬幣的樣本空間為,則與事件“一個正面(朝上)一個反面(朝上)”對應的樣本空間的子集為______14.已知等差數(shù)列中,,則=_________.15.已知雙曲線的焦點,過F且斜率為1的直線與雙曲線有且只有一個交點,則雙曲線的方程為_________16.某射箭運動員在一次射箭訓練中射靶10次,命中環(huán)數(shù)如下:8,9,8,10,6,7,9,10,8,5,則命中環(huán)數(shù)的平均數(shù)為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.18.(12分)已知動點到點的距離與點到直線的距離相等.(1)求動點的軌跡方程;(2)若過點且斜率為的直線與動點的軌跡交于、兩點,求三角形AOB的面積.19.(12分)在①,②,③這三個條件中任選一個,補充在下面問題的題設條件中.問題:等差數(shù)列的公差為,滿足,________?(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和得到最小值時的值.20.(12分)已知橢圓C:的長軸長為4,過C的一個焦點且與x軸垂直的直線被C截得的線段長為3(1)求C的方程;(2)若直線:與C交于A,B兩點,線段AB的中垂線與C交于P,Q兩點,且,求m的值21.(12分)過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2)(1)求圓C的標準方程;(2)直線l過B點與圓C相切,求直線l的方程,并化為一般式22.(10分)某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:表1:生產(chǎn)能力分組人數(shù)48x53表2:生產(chǎn)能力分組人數(shù)6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更???(不用計算,可通過觀察直方圖直接回答結(jié)論)②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)圖1A類工人生產(chǎn)能力的頻率分布直方圖圖2B類工人生產(chǎn)能力的頻率分布直方圖
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由等差數(shù)列前項和的性質(zhì)計算即可.【詳解】由等差數(shù)列前項和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.2、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A3、D【解析】根據(jù)橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.4、C【解析】利用簡易邏輯的知識逐一判斷即可.【詳解】,故A正確;菱形的四邊相等,但不一定是正方形,故B正確;“存在實數(shù),使”的否定是“對任意的實數(shù)都有”,故C錯誤;假設且,則,與矛盾,故D正確;故選:C5、A【解析】求出兩直線垂直的充要條件后再根據(jù)充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A6、D【解析】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,求出點M的軌跡方程即可計算得解.【詳解】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,如圖,設點,則,化簡并整理得:,于是得點M的軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區(qū)域的面積為.故選:D7、D【解析】命題是假命題,命題是真命題,根據(jù)復合命題的真值表可判斷真假.【詳解】因為,故命題是假命題,又命題是真命題,故為假,為假,為假,為真命題,故選D.【點睛】復合命題的真假判斷有如下規(guī)律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.8、A【解析】利用空間向量的模公式求解.【詳解】因向量,所以,故選:A9、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關系,即可判斷兩圓的位置關系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A10、B【解析】先由遞推關系利用累加法求出通項公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項為.故選:B11、C【解析】利用面積公式,求出,進而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因為的面積為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C12、C【解析】根據(jù)題干條件得到相似,進而得到,求出點P到準線l的距離.【詳解】由題意得:,準線方程為,因為,所以,故點P到準線l的距離為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、,,,【解析】先寫出與事件“一個正面(朝上)一個反面(朝上)”對應的樣本空間,再寫出其全部子集即可.【詳解】與事件“一個正面(朝上)一個反面(朝上)”對應的樣本空間為,此空間的子集為,,,故答案為:,,,14、4【解析】由等差數(shù)列的通項公式求出公差,進而求出.【詳解】設該等差數(shù)列的公差為,則,所以.故答案為:4.15、【解析】根據(jù)直線與雙曲線只有一個交點可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個交點,且焦點,直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:16、【解析】直接利用求平均數(shù)的公式即可求解.【詳解】由已知得數(shù)據(jù)的平均數(shù)為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數(shù)求導,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,結(jié)合方程的根與系數(shù)關系可求,(2)由(1)可求,然后結(jié)合導數(shù)可判斷函數(shù)的單調(diào)性,進而可求函數(shù)的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調(diào)遞增,在上單調(diào)遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點睛】本題考查利用極值求函數(shù)的參數(shù),以及利用導數(shù)求函數(shù)的最值問題,屬于中檔題18、(1)(2)【解析】小問1:由拋物線的定義可求得動點的軌跡方程;小問2:可知直線的方程為,設點、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問1詳解】由題意點的軌跡是以為焦點,直線為準線的拋物線,所以,則,所以動點的軌跡方程是.【小問2詳解】由已知直線的方程是,設、,由得,,所以,則,故,19、(1)選擇條件見解析,(2)【解析】(1)設等差數(shù)列的公差為,由,得到,選①,聯(lián)立求解;選②,聯(lián)立求解;選③,聯(lián)立求解;(2)由(1)知,令求解.【小問1詳解】解:設等差數(shù)列的公差為,得,選①,得,故,∴.選②,得,得,故,∴.選③,,得,故,∴;【小問2詳解】由(1)知,,,∴數(shù)列是遞增等差數(shù)列.由,得,∴時,,時,,∴時,得到最小值.20、(1);(2).【解析】(1)由題設可得且,求出,即可得橢圓方程.(2)聯(lián)立直線l和橢圓C并整理為關于x的一元二次方程,由求出m的范圍,再應用韋達定理、弦長公式求,進而可得線段AB的中垂線,同理聯(lián)立曲線C求相交弦長,再由已知條件求m值,注意其范圍.【小問1詳解】由題意知,,則,令,可得,由題設有,則,所以C的方程為【小問2詳解】聯(lián)立方程得:,由,得設,,則,,所以,另一方面,,即線段AB的中點為,所以線段AB的中垂線方程為令,聯(lián)立方程得:同理求法,可得:,即因此,解得,故21、(1);(2)【解析】(1)設圓的標準方程為:,則分別代入原點和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,則分別討論斜率存在與否,運用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設圓C的標準方程為,則分別代入原點和,得到,解得則圓的標準方程為(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,當時,到的距離為2,不合題意,舍去;當斜率存在時,設,由直線與圓相切,得到,即有,解得,故直線,即為點睛:本題考查直線與圓位置關系,考查圓的方程的求法和直線與圓相切的條件,考查運算能力,屬于中檔題;圓的方程有一般形式與標準形式,在該題中利用待定系數(shù)法將其設為標準形式,列、解出方程組即可;當直線與圓相切時等價于圓心到直線的距離等于半徑,已知直線上一點寫出直線的方程需注意斜率不存在的情形.22、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】(1)先計算抽樣比為,進而可得各層抽取人數(shù)(2)①類、類工人人數(shù)之比為,按此比例確定兩類工人需抽取的人數(shù),再算出和即可.畫出頻率分布直方圖,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-CFIAS 3010-2023 飼料添加劑 乙氧基喹啉
- 初中英語教學工作參考計劃
- 溝通談判技巧-主課件B
- 商店選址分析報告范文
- 2024學年三省G20高三語文(上)12月聯(lián)考試卷附答案解析
- 《技術試驗》課件
- 2024-2025學年年八年級數(shù)學人教版下冊專題整合復習卷第11章 一次函數(shù)單元測試(BC卷)(含答案)
- 小課題研究報告范文
- 東莞春節(jié)旅游報告范文
- 2025年福州貨運從業(yè)資格證模擬考試試題題庫及答案
- 談談青年大學生在中國式現(xiàn)代化征程上的使命與擔當范文(6篇)
- DB13-T 5660-2023 水文水井分層抽水技術規(guī)范
- 二年級上冊綜合實踐測試卷
- 互聯(lián)網(wǎng)金融外文文獻翻譯
- 產(chǎn)前篩查、診斷及新生兒疾病篩查
- 小學《科學》期末測評方案
- 友邦保險“愈從容”重疾專案管理服務手冊(完整版)
- 會計師事務所筆試題目整理
- 2023年消防接警員崗位理論知識考試參考題庫(濃縮500題)
- ?;⒅闊o機保溫板外墻施工方案
- GB/T 7702.20-2008煤質(zhì)顆?;钚蕴吭囼灧椒兹莘e和比表面積的測定
評論
0/150
提交評論