版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省杭州市名校協(xié)作體2025屆數(shù)學(xué)高二上期末檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,底面是等腰直角三角形,,則與平面所成角的正弦值為()A. B.C. D.2.若拋物線焦點坐標(biāo)為,則的值為A. B.C.8 D.43.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項,則的值為()A. B.C. D.4.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進(jìn)行調(diào)查,欲抽取100名員工,應(yīng)當(dāng)抽取的一般員工人數(shù)為()A.100 B.15C.80 D.505.已知圓,為圓外的任意一點,過點引圓的兩條切線、,使得,其中、為切點.在點運(yùn)動的過程中,線段所掃過圖形的面積為()A. B.C. D.6.等差數(shù)列中,,,則()A.1 B.2C.3 D.47.設(shè)為拋物線焦點,直線,點為上任意一點,過點作于,則()A.3 B.4C.2 D.不能確定8.已知,則點關(guān)于平面的對稱點的坐標(biāo)是()A. B.C. D.9.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.10.“不到長城非好漢,屈指行程二萬”,出自毛主席1935年10月所寫的一首詞《清平樂·六盤山》,反映了中華民族的一種精神氣魄,一種積極向上的奮斗精神.從數(shù)學(xué)邏輯角度分析,其中“好漢”是“到長城”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件11.已知橢圓:的離心率為,則實數(shù)()A. B.C. D.12.雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集是_______________14.已知數(shù)列滿足,將數(shù)列按如下方式排列成新數(shù)列:,,,,,,,,,…,,….則新數(shù)列的前70項和為______15.我國民間剪紙藝術(shù)在剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折.現(xiàn)有一張半徑為的圓形紙,對折次可以得到兩個規(guī)格相同的圖形,將其中之一進(jìn)行第次對折后,就會得到三個圖形,其中有兩個規(guī)格相同,取規(guī)格相同的兩個之一進(jìn)行第次對折后,就會得到四個圖形,其中依然有兩個規(guī)格相同,以此類推,每次對折后都會有兩個圖形規(guī)格相同.如果把次對折后得到的不同規(guī)格的圖形面積和用表示,由題意知,,則________;如果對折次,則________.16.已知等差數(shù)列公差不為0,且,,等比數(shù)列,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當(dāng)時,證明,,;(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.18.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,若存在請求出的位置,不存在請說明理由.19.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個等邊三角形都是相似的;(2):,.20.(12分)已知橢圓:的左、右焦點分別為,,過點的直線l交橢圓于A,兩點,的中點坐標(biāo)為.(1)求直線l的方程;(2)求的面積.21.(12分)若分別是橢圓的左、右焦點,是該橢圓上的一個動點,且(1)求橢圓的方程(2)是否存在過定點的直線與橢圓交于不同的兩點,使(其中為坐標(biāo)原點)?若存在,求出直線的斜率;若不存在,說明理由22.(10分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】取的中點,連接,易證平面,進(jìn)一步得到線面角,再解三角形即可.【詳解】如圖,取的中點,連接,三棱柱為直三棱柱,則平面,又平面,所以,又由題意可知為等腰直角三角形,且為斜邊的中點,從而,而平面,平面,且,所以平面,則為與平面所成的角.在直角中,.故選:C2、A【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而根據(jù)拋物線的焦點坐標(biāo),可得的值.【詳解】拋物線的標(biāo)準(zhǔn)方程為,因為拋物線的焦點坐標(biāo)為,所以,所以,故選A.【點睛】該題考查的是有關(guān)利用拋物線的焦點坐標(biāo)求拋物線的方程的問題,涉及到的知識點有拋物線的簡單幾何性質(zhì),屬于簡單題目.3、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.4、C【解析】按照比例關(guān)系,分層抽取.【詳解】由題意可知,所以應(yīng)當(dāng)抽取的一般員工人數(shù)為.故選:C5、D【解析】連接、、,分析可知四邊形為正方形,求出點的軌跡方程,分析可知線段所掃過圖形為是夾在圓和圓的圓環(huán),利用圓的面積公式可求得結(jié)果.【詳解】連接、、,由圓的幾何性質(zhì)可知,,又因為且,故四邊形為正方形,圓心,半徑為,則,故點的軌跡方程為,所以,線段掃過的圖形是夾在圓和圓的圓環(huán),故在點運(yùn)動的過程中,線段所掃過圖形的面積為.故選:D.6、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B7、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因為過點作于,可得,所以,故選:A.8、C【解析】根據(jù)對稱性求得坐標(biāo)即可.【詳解】點關(guān)于平面的對稱點的坐標(biāo)是,故選:C9、D【解析】根據(jù)圓的割線定理,結(jié)合圓的性質(zhì)進(jìn)行求解即可.【詳解】圓的圓心坐標(biāo)為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D10、A【解析】根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可【詳解】解:設(shè)為不到長城,推出非好漢,即,則,即好漢到長城,故“好漢”是“到長城”的充分條件,故選:A11、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因為,所以所以,解得.故選:C12、A【解析】直接求出,,進(jìn)而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】將分式不等式,轉(zhuǎn)化為一元二次不等式求解【詳解】因為,所以,解得或.故答案為:或【點睛】本題主要考查分式不等式的解法,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.14、##2.9375【解析】先根據(jù)題干條件得到,再利用錯位相減法求前64項和,最后求出前70項和.【詳解】①,當(dāng)時,;當(dāng)時,②,①-②得:,即又滿足,所以由,得令,則,兩式相減得,則所以新數(shù)列的前70項和為故答案為:15、①.②.【解析】首先根據(jù)題意得到,再計算即可;根據(jù)題意得到,再利用分組求和法求和即可.【詳解】因為,,所以,所以..故答案為:;16、【解析】設(shè)等差數(shù)列的公差為,由,,等比數(shù)列,可得,則的值可求【詳解】解:設(shè)等差數(shù)列的公差為,,,等比數(shù)列,,則,得,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點,則在上有根.再分,與,利用函數(shù)的零點存在定理討論導(dǎo)函數(shù)的零點即可.【詳解】(1)證明:當(dāng)時,,則,當(dāng)時,,則,又因為,所以當(dāng)時,,僅時,,所以在上是單調(diào)遞減,所以,即.(2),因為,所以,①當(dāng)時,恒成立,所以在上單調(diào)遞增,沒有極值點.②當(dāng)時,在區(qū)間上單調(diào)遞增,因為.當(dāng)時,,所以在上單調(diào)遞減,沒有極值點.當(dāng)時,,所以存在,使當(dāng)時,時,所以在處取得極小值,為極小值點.綜上可知,若函數(shù)在上存在極值點,則實數(shù).【點睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進(jìn)而證明不等式的方法.同時也考查了利用導(dǎo)數(shù)分析函數(shù)極值點的問題,需要結(jié)合零點存在定理求解.屬于難題.18、(1)證明見解析(2)存在,點E為線段中點【解析】(1)通過作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),再求相關(guān)的向量坐標(biāo),求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點,因,則由平面?zhèn)让?,且平面?zhèn)让妫闷矫?,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側(cè)面,又側(cè)面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設(shè)在線段上是否存在一點E,使得二面角的大小為,由是直三棱柱,所以以點A為原點,以AC、所在直線分別為x,z軸,以過A點和AC垂直的直線為y軸,建立空間直角坐標(biāo)系,如圖所示,則,且設(shè),,得所以,設(shè)平面的一個法向量,由,得:,取,由(1)知平面,所以平面的一個法向量,所以,解得,∴點E為線段中點時,二面角的大小為.19、(1)存在兩個等邊三角形不是相似的,假命題(2),真命題【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【小問1詳解】解:命題“任意兩個等邊三角形都是相似的”是一個全稱命題根據(jù)全稱命題與存在性命題的關(guān)系,可得其否定“存在兩個等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據(jù)全稱命題與存在性命題關(guān)系,可得:命題的否定為.因為,所以命題為真命題.20、(1)(2)【解析】(1)設(shè),根據(jù)AB的中點坐標(biāo)可得,再利用點差法求得直線的斜率,即可求出直線方程;(2)易得直線過左焦點,聯(lián)立直線和橢圓方程,消,利用韋達(dá)定理求得,再根據(jù)即可得出答案.【小問1詳解】解:設(shè),因為的中點坐標(biāo)為,所以,則,兩式相減得,即,即,所以直線l的斜率為1,所以直線l的方程為,即;【小問2詳解】在直線中,當(dāng)時,,由橢圓:,得,則直線過點,聯(lián)立,消整理得,則,.21、(1);(2)存在;【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,利用列方程,化簡求得直線的斜率.【小問1詳解】依題意,得橢圓的方程為【小問2詳解】存在.理由如下:顯然當(dāng)直線的斜率不存在,即時,不滿足條件故由題意可設(shè)的方程為.由是直線與橢圓的兩個不同的交點,設(shè),由消去y,并整理,得,則,解得,由根與系數(shù)的關(guān)系得,,即存在斜率的直線與橢圓交于不同的兩點,使22、(1)證明過程見解析;(2).【解析】(1)利用平面與平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度工程建設(shè)項目協(xié)議范本
- 2024年商用經(jīng)營權(quán)租賃協(xié)議
- 7.5相對論時空觀與牛頓力學(xué)的局限性(含答案)-2022-2023學(xué)年高一物理同步精講義(人教2019必修第二冊 )
- 2024年國際貨物運(yùn)輸銷售協(xié)議模板
- 兒童撫養(yǎng)權(quán)轉(zhuǎn)移協(xié)議模板2024年
- 2024年無房產(chǎn)證私房買賣協(xié)議范本
- 2024年度個人汽車租賃協(xié)議范本
- 2024年酒吧業(yè)主權(quán)益轉(zhuǎn)讓協(xié)議
- BF2024年二手房銷售協(xié)議模板
- 2024年度龍湖房地產(chǎn)開發(fā)建設(shè)協(xié)議
- 蔬菜出口基地備案管理課件
- 高考英語單詞3500記憶短文40篇
- 北京市商業(yè)地產(chǎn)市場細(xì)分研究
- 2023-2024學(xué)年重慶市大足區(qū)八年級(上)期末數(shù)學(xué)試卷(含解析)
- 肺結(jié)節(jié)科普知識宣講
- 網(wǎng)絡(luò)直播營銷
- 2024年節(jié)能減排培訓(xùn)資料
- 2024傳染病預(yù)防ppt課件完整版
- 2024年華融實業(yè)投資管理有限公司招聘筆試參考題庫含答案解析
- 2024年1月普通高等學(xué)校招生全國統(tǒng)一考試適應(yīng)性測試(九省聯(lián)考)歷史試題(適用地區(qū):貴州)含解析
- 《寬容待人 正確交往》班會課件
評論
0/150
提交評論