黑龍江省綏化市青岡縣2025屆數(shù)學高二上期末綜合測試試題含解析_第1頁
黑龍江省綏化市青岡縣2025屆數(shù)學高二上期末綜合測試試題含解析_第2頁
黑龍江省綏化市青岡縣2025屆數(shù)學高二上期末綜合測試試題含解析_第3頁
黑龍江省綏化市青岡縣2025屆數(shù)學高二上期末綜合測試試題含解析_第4頁
黑龍江省綏化市青岡縣2025屆數(shù)學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

黑龍江省綏化市青岡縣2025屆數(shù)學高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.與直線關于軸對稱的直線的方程為()A. B.C. D.2.已知數(shù)列的前n項和為,則“數(shù)列是等比數(shù)列”為“存在,使得”的()A.既不充分也不必要條件 B.必要不充分條件C.充要條件 D.充分不必要條件3.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.4.如圖為學生做手工時畫的橢圓(其中網(wǎng)格是由邊長為1的正方形組成),它們的離心率分別為,則()A. B.C. D.5.已知直線:和:,若,則實數(shù)的值為()A. B.3C.-1或3 D.-16.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點,那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.07.若命題為“,”,則為()A., B.,C., D.,8.如圖,一個圓錐形的空杯子上面放著一個半徑為4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛滿杯子,則杯子的高()A.9cm B.6cmC.3cm D.4.5cm9.觀察,,,由歸納推理可得:若定義在上的函數(shù)滿足,記為的導函數(shù),則=A. B.C. D.10.一物體做直線運動,其位移(單位:)與時間(單位:)的關系是,則該物體在時的瞬時速度是A. B.C. D.11.已知橢圓的右焦點為F,短軸的一個端點為P,直線與橢圓相交于A、B兩點.若,點P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.12.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若a,b,c都為正數(shù),,且,,成等比數(shù)列,則的最大值為____________.14.如果橢圓上一點P到焦點的距離等于6,則點P到另一個焦點的距離為____15.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________16.已知AB為圓O:的直徑,點P為橢圓上一動點,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,,再從①;②;③這三個條件中選擇___________,___________兩個作為已知.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(1)求與所成角的大??;(2)求與平面所成角的余弦值19.(12分)已知橢圓C與橢圓有相同的焦點,且離心率為.(1)橢圓C的標準方程;(2)若橢圓C的兩個焦點,P是橢圓上的點,且,求的面積.20.(12分)已知橢圓左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程21.(12分)(1)求函數(shù)的單調(diào)區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.22.(10分)新冠肺炎疫情期間,某地為了解本地居民對當?shù)胤酪吖ぷ鞯臐M意度,從本地居民中隨機抽取了1500名居民進行評分(滿分100分),根據(jù)調(diào)查數(shù)據(jù)制成如下表格和頻率分布直方圖.滿意度評分滿意度等級不滿意基本滿意滿意非常滿意(1)求a的值;(2)定義滿意度指數(shù),若,則防疫工作需要進行調(diào)整,否則不需要調(diào)整,根據(jù)所學知識判斷該區(qū)防疫工作是否需要進行調(diào)整?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】點關于x軸對稱,橫坐標不變,縱坐標互為相反數(shù),據(jù)此即可求解.【詳解】設(x,y)是與直線關于軸對稱的直線上任意一點,則(x,-y)在上,故,∴與直線關于軸對稱的直線的方程為.故選:D.2、D【解析】由充分必要條件的定義,結(jié)合等比數(shù)列的通項公式和求和公式,以及利用特殊數(shù)列的分法,即可求解.【詳解】由題意,數(shù)列是等比數(shù)列,設等比數(shù)列的公比為,則,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,當,可得,此時數(shù)列不是等比數(shù)列,即必要性不成立,所以數(shù)列是等比數(shù)列為存在,使得的充分不必要條件.故選:D.3、D【解析】由題設可得求出橢圓參數(shù),即可得方程.【詳解】由題設,知:,可得,則,∴C的方程為.故選:D.4、D【解析】根據(jù)圖知分別得到橢圓、、的半長軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,所以,,,所以,故選:D5、D【解析】利用兩直線平行列式求出a值,再驗證即可判斷作答.【詳解】因,則,解得或,當時,與重合,不符合題意,當時,,符合題意,所以實數(shù)的值為-1.故選:D6、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A7、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B8、A【解析】根據(jù)圓錐和球的體積公式以及半球的體積等于圓錐的體積,即可列式解出【詳解】由題意可得,,解得.故選:A9、D【解析】由歸納推理可知偶函數(shù)的導數(shù)是奇函數(shù),因為是偶函數(shù),則是奇函數(shù),所以,應選答案D10、A【解析】先對求導,然后將代入導數(shù)式,可得出該物體在時的瞬時速度【詳解】對求導,得,,因此,該物體在時的瞬時速度為,故選A【點睛】本題考查瞬時速度的概念,考查導數(shù)與瞬時變化率之間的關系,考查計算能力,屬于基礎題11、D【解析】設橢圓的左焦點為,由題可得,由點P到直線l的距離不小于可得,進而可求的范圍,即可得出離心率范圍.【詳解】設橢圓的左焦點為,P為短軸的上端點,連接,如圖所示:由橢圓的對稱性可知,A,B關于原點對稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點P到直線l距離:,解得:,即,∴,∴.故選:D.【點睛】關鍵點睛:本題考查橢圓離心率的求解,解題的關鍵是由橢圓定義得出,再根據(jù)已知條件得出.12、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設傾斜角為,因為,且,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由等比數(shù)列性質(zhì)知,即可得,再利用基本不等式求解即可.【詳解】由,,成等比數(shù)列,得,即又,則,所以,即,即所以,當且僅當時,等號成立,故的最大值為故答案為:14、14【解析】根據(jù)橢圓的定義及橢圓上一點P到焦點的距離等于6,可得的長.【詳解】解:根據(jù)橢圓的定義,又橢圓上一點P到焦點的距離等于6,,故,故答案:.【點睛】本題主要考查橢圓的定義及簡單性質(zhì),相對簡單.15、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:316、2【解析】方法一:通過對稱性取特殊位置,設出P的坐標,利用向量的數(shù)量積轉(zhuǎn)化求解最小值即可方法二:利用向量的數(shù)量積,轉(zhuǎn)化為向量的和與差的平方,通過圓的特殊性,轉(zhuǎn)化求解即可【詳解】解:方法一:依據(jù)對稱性,不妨設直徑AB在x軸上,x,,,從而故答案為2方法二:,而,則答案2故答案為2【點睛】本題考查直線與圓的位置關系、橢圓方程的幾何性質(zhì)考查轉(zhuǎn)化思想以及計算能力三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、答案見解析【解析】(1)根據(jù)題設條件可得關于基本量的方程組,求解后可得的通項公式.(2)利用公式法可求數(shù)列的前項和.【詳解】解:選擇條件①和條件②(1)設等差數(shù)列的公差為,∴解得:,.∴,.(2)設等比數(shù)列的公比為,,∴解得,.設數(shù)列的前項和為,∴.選擇條件①和條件③:(1)設等差數(shù)列的公差為,∴解得:,.∴.(2),設等比數(shù)列的公比為,.∴,解得,.設數(shù)列的前項和為,∴.選擇條件②和條件③:(1)設等比數(shù)列的公比為,,∴,解得,,.設等差數(shù)列的公差為,∴,又,故.∴.(2)設數(shù)列的前項和為,由(1)可知.【點睛】方法點睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學問題轉(zhuǎn)化為關于基本量的方程或方程組,再運用基本量解決與數(shù)列相關的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學問題18、(1)60°;(2).【解析】(1)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出異面直線所成角的余弦值,進而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出求出線面角的正弦值,進而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系,設正方體的棱長為,則,,,,所以,,設與EF所成角的大小為,則,因為異面直線成角的范圍是,所以與所成角的大小為60°【小問2詳解】設平面的法向量為,與平面所成角為,因為,,所以,,所以,令,得為平面的一個法向量,又因為,所以,所以19、(1)(2)【解析】(1)由題意求出即可求解;(2)由橢圓的定義和三角形面積公式求解即可【小問1詳解】因為橢圓C與橢圓有相同的焦點,所以橢圓C的焦點,,,又,所以,,所以橢圓C的標準方程為.【小問2詳解】由,,得,,而,所以,所以20、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設,則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當直線的斜率存在時,設直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點.當直線的斜率不存在時,因為,所以直線的方程為,經(jīng)驗證,符合題意.故直線過定點.因為為的中點,為的中點,所以過定點.因為垂直平分公共弦,所以點在以為直徑的圓上運動,該圓的半徑,圓心坐標為,故動點的軌跡方程為21、(1)的單調(diào)減區(qū)間為和,單調(diào)增區(qū)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論