版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
貴州畢節(jié)大方縣三中2025屆高二數(shù)學第一學期期末調(diào)研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是雙曲線:上一點,已知,則的值()A. B.C.或 D.2.在等差數(shù)列中,若,則()A.6 B.9C.11 D.243.下列求導運算正確的是()A. B.C. D.4.《周髀算經(jīng)》中有這樣一個問題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,自冬至日起,其日影長依次成等差數(shù)列,立春當日日影長為9.5尺,立夏當日日影長為2.5尺,則冬至當日日影長為()A.12.5尺 B.13尺C.13.5尺 D.14尺5.已知等比數(shù)列{an}中,,,則()A. B.1C. D.46.已知橢圓的兩焦點分別為,,P為橢圓上一點,且,則的面積等于()A.6 B.C. D.7.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.8.已知m,n是兩條不同直線,α,β,γ是三個不同平面,下列命題中正確的為A若α⊥γ,β⊥γ,則α∥β B.若m∥α,m∥β,則α∥βC.若m∥α,n∥α,則m∥n D.若m⊥α,n⊥α,則m∥n9.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結(jié)果為()A. B.C. D.10.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.11.在等差數(shù)列中,其前項和為.若,是方程的兩個根,那么的值為()A.44 B.C.66 D.12.等比數(shù)列的前項和為,前項積為,,當最小時,的值為()A.3 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項的系數(shù)是,則正整數(shù)______________.14.已知曲線在點處的切線方程是,則的值為______15.隨機投擲一枚均勻的硬幣兩次,則兩次都正面朝上的概率為______16.復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù)______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數(shù)的導數(shù):(1);(2).18.(12分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點,A是橢圓C與x軸正半軸的交點,直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點Q為橢圓上任意一點,求面積的最大值19.(12分)已知的離心率為,短軸長為2,F(xiàn)為右焦點(1)求橢圓的方程;(2)在x軸上是否存在一點M,使得過F的任意一條直線l與橢圓的兩個交點A,B,恒有,若存在求出M的坐標,若不存在,說明理由20.(12分)某公園有一形狀可抽象為圓柱的標志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側(cè)有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監(jiān)控范圍內(nèi)?(2)求觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度21.(12分)已知圓的圓心在直線上,且圓與軸相切于點(1)求圓的標準方程;(2)若直線與圓相交于,兩點,求的面積22.(10分)已知圓C的圓心在直線上,且圓C經(jīng)過,兩點.(1)求圓C的標準方程.(2)設直線與圓C交于A,B(異于坐標原點O)兩點,若以AB為直徑的圓過原點,試問直線l是否過定點?若是,求出定點坐標;若否,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點到焦點的距離的取值范圍,即可求解.【詳解】雙曲線方程為:,是雙曲線:上一點,,,或,又,.故選:B2、B【解析】根據(jù)等差數(shù)列的通項公式的基本量運算求解【詳解】設的公差為d,因為,所以,又,所以故選:B3、B【解析】根據(jù)基本初等函數(shù)的導數(shù)和求導法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導數(shù)公式,考查導數(shù)的運算法則,屬于基礎題.4、B【解析】設十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,利用等差數(shù)列的性質(zhì)即可求解.【詳解】設十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,則立春當日日影長為,立夏當日日影長為,故所以冬至當日日影長為.故選:B5、D【解析】設公比為,然后由已知條件結(jié)合等比數(shù)列的通項公式列方程求出,從而可求出,【詳解】設公比為,因為等比數(shù)列{an}中,,,所以,所以,解得,所以,得故選:D6、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點,∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B7、A【解析】由題設及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設易知:橢圓參數(shù),即有,可得故選:A8、D【解析】根據(jù)空間線面、面面的平行,垂直關系,結(jié)合線面、面面的平行,垂直的判定定理、性質(zhì)定理解決【詳解】∵α⊥γ,β⊥γ,α與β的位置關系是相交或平行,故A不正確;∵m∥α,m∥β,α與β的位置關系是相交或平行,故B不正確;∵m∥α,n∥α,m與n的位置關系是相交、平行或異面∴故C不正確;∵垂直于同一平面的兩條直線平行,∴D正確;故答案D【點睛】本題考查線面平行關系判定,要注意直線、平面的不確定情況9、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C10、B【解析】由已知可設,則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設,則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設,則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標準方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學素養(yǎng)11、D【解析】由,是方程的兩個根,利用韋達定理可知與的和,根據(jù)等差數(shù)列的性質(zhì)可得與的和等于,即可求出的值,然后再利用等差數(shù)列的性質(zhì)可知等于的11倍,把的值代入即可求出的值.【詳解】因為,是方程的兩個根,所以,而,所以,則,故選:.12、B【解析】根據(jù)等比數(shù)列相關計算得到,,進而求出與,代入后得到,利用指數(shù)函數(shù)和二次函數(shù)單調(diào)性得到當時,取得最小值.【詳解】顯然,由題意得:,,兩式相除得:,將代入,解得:,所以,所以,,所以,其中單調(diào)遞增,所以當時,取得最小值.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由已知二項式可得展開式通項為,根據(jù)已知條件有,即可求出值.詳解】由題設,,∴,則且為正整數(shù),解得.故答案為:4.14、11【解析】根據(jù)給定條件結(jié)合導數(shù)的幾何意義直接計算作答.【詳解】因曲線在點處的切線方程是,則,,所以.故答案為:1115、##【解析】列舉出所有情況,利用古典概型的概率公式求解即可【詳解】隨機投擲一枚均勻的硬幣兩次,共有:正正,正反,反正,反反共4種情況,兩次都是正面朝上的有:正正1種情況,所以兩次都正面朝上的概率為,故答案為:16、##【解析】根據(jù)共軛復數(shù)的概念,即可得答案.【詳解】由題意可知:復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù),故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)導數(shù)的加法運算法則,結(jié)合常見函數(shù)的導數(shù)進行求解即可;(2)根據(jù)導數(shù)的加法和乘法的運算法則,結(jié)合常見函數(shù)的導數(shù)進行求解即可.【小問1詳解】;【小問2詳解】.18、(1)(2)18【解析】(1)易得,,進而有,再結(jié)合已知即可求解;(2)由(1)易得直線AP的方程為,,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,聯(lián)立即可得與AP距離比較遠的切線方程,從而即可求解.【小問1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡得,解得,又,,所以,∴,∴橢圓的方程為;【小問2詳解】解:由(1)知,直線AP的方程為,即,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,化簡可得,由,即,解得,所以與AP距離比較遠的切線方程,因為與之間的距離,又,所以的面積的最大值為19、(1);(2)存在點M滿足條件,點M的坐標為.【解析】(1)根據(jù)給定條件直接計算出即可求解作答.(2)假定存在點,當直線l與x軸不重合時,設出l的方程,與橢圓C的方程聯(lián)立,借助、斜率互為相反數(shù)計算得解,再驗證直線l與x軸重合的情況即可作答.【小問1詳解】依題意,,而離心率,即,解得,所以橢圓C的方程為:.【小問2詳解】由(1)知,,假定存在點滿足條件,當直線與x軸不重合時,設l的方程為:,由消去x并整理得:,設,則有,因,則直線、斜率互為相反數(shù),于是得:,整理得,即,則有,即,而m為任意實數(shù),則,當直線l與x軸重合時,點A,B為橢圓長軸的兩個端點,點也滿足,所以存在點M滿足條件,點M的坐標為.【點睛】思路點睛:解答直線與橢圓相交的問題,常把直線與橢圓的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關系,并結(jié)合題設條件建立有關參變量的等量關系.20、(1)不在(2)17.5米【解析】(1)以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系,求出直線AB方程,判斷直線AB與圓O的位置關系即可;(2)攝像頭監(jiān)控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系則,觀景直道所在直線的方程為依題意得:游客所在點為則直線AB的方程為,化簡得,所以圓心O到直線AB的距離,故直線AB與圓O相交,所以游客不在該攝像頭監(jiān)控范圍內(nèi).【小問2詳解】由圖易知:過點A的直線l與圓O相切或相離時,攝像頭監(jiān)控不會被建筑物遮擋,所以設直線l過A且恰與圓O相切,①若直線l垂直于x軸,則l不可能與圓O相切;②若直線l不垂直于x軸,設,整理得所以圓心O到直線l的距離為,解得或,所以直線l的方程為或,即或,設這兩條直線與交于D,E由,解得,由,解得,所以,觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度為17.5米.21、(1)(2)4【解析】(1)由已知設圓心,再由相切求圓半徑從而得解.(2)求弦長,再求點到直線的距離,進而可得解.【小問1詳解】因為圓心在直線上,所以設圓心,又圓與軸相切于點,所以,即圓與軸相切,則圓的半徑,于是圓的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度新型城鎮(zhèn)化建設項目房地產(chǎn)測繪業(yè)務全權委托合同2篇
- 2024年度文化產(chǎn)業(yè)品牌管理人才聘用合同樣本3篇
- 2024年標準版技術保密合作合同書版
- 2024版建筑工程質(zhì)量檢測承包合同3篇
- 2024年定制版房產(chǎn)交易獨家協(xié)議版B版
- 2024版房產(chǎn)買賣合同及相關稅費說明3篇
- 2024年標準建筑工程項目協(xié)議模板與索賠指南版B版
- 2024年度企業(yè)員工招聘面試流程優(yōu)化與改進服務合同3篇
- 2024年度智能家居燈具安裝及售后保障合同3篇
- 2024年度商標轉(zhuǎn)讓及品牌連鎖加盟推廣合同范本3篇
- 江蘇南京鼓樓區(qū)2023-2024九年級上學期期末語文試卷及答案
- 河南汽車工廠48萬臺乘用車發(fā)動機建設項目竣工環(huán)境保護驗收監(jiān)測報告
- 2023-2024學年四川省成都市金牛區(qū)八年級(上)期末數(shù)學試卷
- 德邦物流-第三方物流服務
- 混凝土冬季施工保溫保濕措施
- 心電監(jiān)護技術
- 2024年華潤電力投資有限公司招聘筆試參考題庫含答案解析
- 壟斷行為的定義與判斷準則
- 模具開發(fā)FMEA失效模式分析
- 聶榮臻將軍:中國人民解放軍的奠基人之一
- 材料化學專業(yè)大學生職業(yè)生涯規(guī)劃書
評論
0/150
提交評論