




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆黑龍江省綏濱縣第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直2.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.3.如果向量,,共面,則實數(shù)的值是()A. B.C. D.4.過點且與原點距離最大的直線方程是()A. B.C. D.5.已知全集,,()A. B.C. D.6.已知數(shù)列通項公式,則()A.6 B.13C.21 D.317.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.8.集合,則集合A的子集個數(shù)為()A.2個 B.4個C.8個 D.16個9.已知是等比數(shù)列,,,則()A. B.C. D.10.橢圓的焦點坐標(biāo)是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)11.為調(diào)查參加考試的高二級1200名學(xué)生的成績情況,從中抽查了100名學(xué)生的成績,就這個問題來說,下列說法正確的是()A.1200名學(xué)生是總體 B.每個學(xué)生是個體C.樣本容量是100 D.抽取的100名學(xué)生是樣本12.雙曲線的左焦點到其漸近線的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點,且周長最小的圓的標(biāo)準(zhǔn)方程為______14.曲線在點處的切線方程為_____________.15.已知函數(shù),若過點存在三條直線與曲線相切,則的取值范圍為___________16.命題“x≥1,x2-2x+4≥0”的否定為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.18.(12分)已知等比數(shù)列滿足(1)求的通項公式;(2)記的前n項和為,證明:,,成等差數(shù)列19.(12分)已知直線l過點A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點P,Q,且|PQ|=8,求圓C方程20.(12分)已知圓.(1)過點作圓的切線,求切線的方程;(2)若直線過點且被圓截得的弦長為2,求直線的方程.21.(12分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標(biāo)配套活動的相關(guān)代言,決定對旗下的某商品進(jìn)行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.22.(10分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標(biāo)原點),當(dāng)直線的傾斜角為銳角時,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.2、D【解析】由題設(shè)易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關(guān)鍵點點睛:由橢圓的對稱性及矩形性質(zhì)可得,由已知條件得到,進(jìn)而得到橢圓參數(shù)的齊次式求離心率范圍.3、B【解析】設(shè),由空間向量的坐標(biāo)運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設(shè),可得,解得.故選:B.4、A【解析】過點且與原點O距離最遠(yuǎn)的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠(yuǎn)的直垂直于直線,,∴過點且與原點O距離最遠(yuǎn)的直線的斜率為,∴過點且與原點O距離最遠(yuǎn)的直線方程為:,即.故選:A5、C【解析】根據(jù)條件可得,則,結(jié)合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C6、C【解析】令即得解.【詳解】解:令得.故選:C7、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A8、C【解析】取,再根據(jù)的周期為4,可得,即可得解.【詳解】因為,所以.時,,時,,時,,時,,所以集合,所以的子集的個數(shù)為,故選:C.9、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項公式,則可求出,得數(shù)列是一個等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個等比數(shù)列.所以=.故選:D10、A【解析】根據(jù)橢圓的方程求得的值,進(jìn)而求得橢圓的焦點坐標(biāo),得到答案.【詳解】由橢圓,可得,則,所以橢圓的焦點坐標(biāo)為和.故選:A.11、C【解析】根據(jù)總體、個體、樣本容量、樣本的定義,結(jié)合題意,即可判斷和選擇.【詳解】根據(jù)題意,總體是名學(xué)生的成績;個體是每個學(xué)生的成績;樣本容量是,樣本是抽取的100名學(xué)生的成績;故正確的是C.故選:C.12、A【解析】求出雙曲線焦點坐標(biāo)與漸近線方程,利用點到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點到漸近線的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】方法一:根據(jù)當(dāng)線段為圓的直徑時,圓周長最小,由線段的中點為圓心,其長一半為半徑求解;方法二:根據(jù)當(dāng)線段為圓的直徑時,圓周長最小,根據(jù)以AB為直徑的圓的方程求解.【詳解】方法一:當(dāng)線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小,即圓心為線段的中點,半徑則所求圓的標(biāo)準(zhǔn)方程為方法二:當(dāng)線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小又,,故所求圓的方程為,整理得,所以所求圓的標(biāo)準(zhǔn)方程為14、【解析】求導(dǎo),求出切線斜率,進(jìn)而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:15、【解析】設(shè)過M的切線切點為,求出切線方程,參變分離得,令,則原問題等價于y=g(x)與y=-m-2的圖像有三個交點,根據(jù)導(dǎo)數(shù)研究g(x)的圖像即可求出m的范圍【詳解】,設(shè)過點的直線與曲線相切于點,則,化簡得,,令,則過點存在三條直線與曲線相切等價于y=g(x)與y=-m-2的圖像有三個交點∵,故當(dāng)x<0或x>1時,,g(x)單調(diào)遞增;當(dāng)0<x<1時,,g(x)單調(diào)遞減,又,,∴g(x)如圖,∴-2<-m-2<0,即故答案為:﹒16、【解析】根據(jù)還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結(jié)論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結(jié)合面面垂直的性質(zhì)定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結(jié)論【小問1詳解】證明:∵M(jìn),N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC18、(1)(2)證明見解析【解析】(1)設(shè)等比數(shù)列的公比為,根據(jù),求得的值,即可求得數(shù)列的通項公式;(2)由等比數(shù)列的求和公式求得,得到,,化簡得到,即可求解【小問1詳解】解:設(shè)等比數(shù)列的公比為,因為,所以,解得,所以,所以數(shù)列的通項公式【小問2詳解】解:由(1)可得,,,所以,所以,即,,成等差數(shù)列19、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l的斜率,由點斜式化簡即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點到直線距離公式求解),半弦長,圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因為直線l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1720、(1);(2)或.【解析】(1)根據(jù)直線與圓相切,求得切線的斜率,利用點斜式即可寫出切線方程;(2)利用弦長公式,結(jié)合已知條件求得直線的斜率,即可求得直線方程.【小問1詳解】圓,圓心,半徑,又點的坐標(biāo)滿足圓方程,故可得點在圓上,則切線斜率滿足,又,故滿足題意的切線斜率,則過點的切線方程為,即.【小問2詳解】直線過點,若斜率不存在,此時直線的方程為,將其代入可得或,故直線截圓所得弦長為滿足題意;若斜率存在時,設(shè)直線方程為,則圓心到直線的距離,由弦長公式可得:,解得,也即,解得,則此時直線的方程為:.綜上所述,直線的方程為或.21、(1)40;(2)a至少達(dá)到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設(shè)每件定價為x元,可得提高價格后的銷售量,根據(jù)銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價;(2)依題意,x>25時,不等式有解,等價于x>25時,有解,利用基本不等式,可以求得a.【詳解】(1)設(shè)每件定價為t元,依題意得,整理得,解得:25≤t≤40.所以要使銷售的總收入不低于原收入,每件定價最多為40元.(2)依題意知:當(dāng)x>25時,不等式有解,等價于x>25時,有解.由于,當(dāng)且僅當(dāng),即x=30時等號成立,所以a≥10.2.當(dāng)該商品改革后的銷售量a至少達(dá)到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 橋隧工中級練習(xí)題及答案(附解析)
- 2024年工業(yè)廢水中級模擬考試題(附答案解析)
- 2023年6月美容師初級練習(xí)題與答案(附解析)
- 稀土金屬壓延加工的殘余應(yīng)力分析考核試卷
- 節(jié)能技術(shù)項目在鋼鐵行業(yè)的節(jié)能減排措施考核試卷
- 電池制造中的工業(yè)應(yīng)用與能源儲存技術(shù)考核試卷
- 2025年其他未列明電子設(shè)備項目合作計劃書
- 2025年熱固化油墨項目發(fā)展計劃
- 經(jīng)濟(jì)型酒店業(yè)客戶體驗優(yōu)化考核試卷
- 聚苯并噁唑改性纖維制備考核試卷
- 教育的情調(diào)讀書分享會PPT
- 10kV保護(hù)定值計算明細(xì)表
- 圖形創(chuàng)意(高職藝術(shù)設(shè)計類)PPT完整全套教學(xué)課件
- 化學(xué)發(fā)光免疫檢驗技術(shù)(免疫學(xué)檢驗課件)
- 醫(yī)學(xué)美容技術(shù)期末考試(試題與答案)
- 0LB2000瀝青攪拌機設(shè)計-畢業(yè)論文
- 區(qū)塊鏈技術(shù)及應(yīng)用PPT完整全套教學(xué)課件
- 小學(xué)語文雙減政策及其落實措施效果研究
- 新版GSP零售藥店質(zhì)量管理體系文件-最終版
- API520-安全閥計算PART1(中文版)
- 服裝廠管理流程
評論
0/150
提交評論