2025屆上海市青浦區(qū)高二數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第1頁
2025屆上海市青浦區(qū)高二數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第2頁
2025屆上海市青浦區(qū)高二數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第3頁
2025屆上海市青浦區(qū)高二數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第4頁
2025屆上海市青浦區(qū)高二數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市青浦區(qū)高二數(shù)學第一學期期末質量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列關于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點D.函數(shù)圖象的對稱軸方程為2.阿基米德既是古希臘著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點,焦點、在軸上,橢圓的面積為,且離心率為,則的標準方程為()A. B.C. D.3.德國數(shù)學家高斯是近代數(shù)學奠基者之一,有“數(shù)學王子”之稱,在歷史上有很大的影響.他幼年時就表現(xiàn)出超人的數(shù)學天才,10歲時,他在進行的求和運算時,就提出了倒序相加法的原理,該原理基于所給數(shù)據前后對應項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.994.設,,,則a,b,c的大小關系為()A. B.C. D.5.已知,則下列不等式一定成立的是()A B.C. D.6.函數(shù)在上單調遞增,則k的取值范圍是()A B.C. D.7.已知函數(shù),則函數(shù)在區(qū)間上的最小值為()A. B.C. D.8.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.99.在等比數(shù)列中,,則的公比為()A. B.C. D.10.若,,則下列各式中正確的是()A. B.C. D.11.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.12.設雙曲線:的左焦點和右焦點分別是,,點是右支上的一點,則的最小值為()A.5 B.6C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.由曲線圍成的圖形的面積為_______________14.以點為圓心,且與直線相切的圓的方程是__________15.已知雙曲線的左焦點為F,點P在雙曲線右支上,若線段PF的中點在以原點O為圓心,為半徑的圓上,且直線PF的斜率為,則該雙曲線的離心率是______16.已知直線與直線垂直,則實數(shù)的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側面積;(2)求平面SCD與平面SAB的夾角的余弦值.18.(12分)已知函數(shù).(1)討論的單調性;(2)任意,恒成立,求的取值范圍.19.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點C到平面BEF的距離20.(12分)如圖,在四棱錐中,底面ABCD是邊長為1的菱形,且,側棱,,M是PC的中點,設,,(1)試用,,表示向量;(2)求BM的長21.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點,使得二面角的余弦值?若存在,指出點的位置;若不存在,說明理由.22.(10分)設函數(shù).(1)討論函數(shù)在區(qū)間上的單調性;(2)函數(shù),若對任意的,總存在使得,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】化簡,利用正弦型函數(shù)的性質,依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數(shù)圖象的對稱中心為點,C選項錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項正確故選:D2、A【解析】設橢圓方程為,解方程組即得解.【詳解】解:設橢圓方程為,由題意可知,橢圓的面積為,且、、均為正數(shù),即,解得,因為橢圓的焦點在軸上,所以的標準方程為.故選:A.3、C【解析】令,利用倒序相加原理計算即可得出結果.【詳解】令,,兩式相加得:,∴,故選:C4、A【解析】構造函數(shù),求導判斷其單調性即可【詳解】令,,令得,,當時,,單調遞增,,,,,,,故選:A5、B【解析】運用不等式的性質及舉反例的方法可求解.【詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B6、A【解析】對函數(shù)求導,由于函數(shù)在給定區(qū)間上單調遞增,故恒成立.【詳解】由題意可得,,,,.故選:A7、B【解析】根據已知條件求得以及,利用導數(shù)判斷函數(shù)的單調性,即可求得函數(shù)在區(qū)間上的最小值.【詳解】因為,故可得,則,又,令,解得,令,解得,故在單調遞減,在單調遞增,又,故在區(qū)間上的最小值為.故選:.8、B【解析】首先地推公式變形,得,,求得數(shù)列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數(shù),得,整理為:,,所以數(shù)列是首項為1,公差為4的等差數(shù)列,,,因為,即,得,解得:,,所以的最大值是7.故選:B9、D【解析】利用等比數(shù)列的性質把方程都變成和有關的式子后進行求解.【詳解】由等比數(shù)列的等比中項性質可得,又,所以,因,所以,所以,故選:D.10、D【解析】根據題意,結合,,利用不等式的性質可判斷,從而判斷,再利用不等式性質得出正確答案.【詳解】,,,又,,兩邊同乘以負數(shù),可知故選:D11、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C12、C【解析】根據雙曲線的方程求出的值,由雙曲線的定義可得,由雙曲線的性質可知,利用函數(shù)的單調性即可求得最小值.【詳解】由雙曲線:可得,,所以,所以,,由雙曲線的定義可得,所以,所以,由雙曲線的性質可知:,令,則,所以上單調遞增,所以當時,取得最小值,此時點為雙曲線的右頂點,即的最小值為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當時,曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據對稱性,可知由曲線圍成的圖形的面積為考點:本小題主要考查曲線表示的平面圖形的面積的求法,考查學生分類討論思想的運用和運算求解能力.點評:解決此題的關鍵是看出所求圖形在四個象限內是相同的,然后求出在一個象限內的圖形的面積即可解決問題.14、;【解析】根據相切可得圓心到直線距離即為圓的半徑,利用點到直線距離公式解出半徑,即可得到圓的方程【詳解】由題,設圓心到直線的距離為,所以,因為圓與直線相切,則,所以圓的方程為,故答案為:【點睛】本題考查利用直線與圓的位置關系求圓的方程,考查點到直線距離公式的應用15、3【解析】如圖利用條件可得,,然后利用雙曲線的定義可得,即求.【詳解】如圖設雙曲線的右焦點為,線段PF的中點為M,連接,則,又直線PF的斜率為,∴在直角三角形中,,∴,∴,即,∴.故答案:3.16、【解析】由直線垂直的充要條件列式計算即可得答案.【詳解】解:因為直線與直線垂直,所以,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據垂直關系依次求解每個側面三角形邊長和面積即可得解;(2)建立空間直角坐標系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交線,所以BC⊥平面SAB,BC⊥BS,,所以四棱錐的側面積【小問2詳解】以A為原點,建立空間直角坐標系如圖所示:設平面SCD的法向量,,取所以取為平面SAB的的法向量所以平面SCD與平面SAB的夾角的余弦值.18、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導數(shù),令、解出對應的解集,結合定義域即可得到函數(shù)的單調區(qū)間;(2)將不等式轉化為,令,利用導數(shù)討論函數(shù)分別在、時的單調性,進而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域為,又當時,,當時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.19、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,進而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進而求得答案.【小問1詳解】因為DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因為ABCD是正方形,所以DA⊥DC.以D為坐標原點,所在方向分別為軸的正方向建立空間直角坐標系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設平面BEF的法向量,因為,所以-2x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因為=(-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小問2詳解】設點C到平面BEF的距離為d,而,所以,所以點C到平面BEF的距離為20、(1);(2).【解析】(1)將,代入中化簡即可得到答案;(2)利用,結合向量數(shù)量積運算律計算即可.【小問1詳解】是PC的中點,,,,,結合,,,得.【小問2詳解】∵底面ABCD是邊長為1的菱形,且,側棱,,,,,.,.由(1)知,,,即BM的長等于.21、(1);(2)存在,為上靠近點的三等分點【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,求出的坐標以及平面的一個法向量,計算即可求解;(2)假設線段上存在點符合題意,設可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,如圖所示:則,,,.不妨設平面的一個法向量,則有,即,取.設直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設線段上存在點,使得二面角的余弦值.設,則,從而,,.設平面的法向量,則有,即,取.設平面的法向量,則有,即,取.,解得:或(舍),故存在點滿足條件,為上靠近點的三等分點【點睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結果.22、(1)答案見解析;(2).【解析】(1)求導,根據導函數(shù)的正負性分類討論進行求解即可;(2)根據存在性和任意性的定義,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論