福建廈門湖濱中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
福建廈門湖濱中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
福建廈門湖濱中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
福建廈門湖濱中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
福建廈門湖濱中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建廈門湖濱中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時測得水深為6cm,如果不計容器的厚度,則球的體積為A. B.C. D.2.從集合中任取兩個不同元素,則這兩個元素相差的概率為()A. B.C. D.3.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.4.某學(xué)校隨機抽取了部分學(xué)生,對他們每周使用手機的時間進行統(tǒng)計,得到如下的頻率分布直方圖.則下列說法:①;②若抽取100人,則平均用時13.75小時;③若從每周使用時間在,,三組內(nèi)的學(xué)生中用分層抽樣的方法選取8人進行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.其中正確的序號是()A.①② B.①③C.②③ D.①②③5.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.6.雙曲線的左頂點為,右焦點,若直線與該雙曲線交于、兩點,為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.7.已知是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則8.如圖,平行六面體中,與的交點為,設(shè),則選項中與向量相等的是()A. B.C. D.9.己知F為拋物線的焦點,過F作兩條互相垂直的直線,,直線與C交于A、B兩點,直線與C交于D、E兩點,則的最小值為()A.24 B.22C.20 D.1610.運行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.2111.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或12.已知、是平面直角坐標系上的直線,“與的斜率相等”是“與平行”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分條件也非必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)命題:,,則為______.14.若在數(shù)列的每相鄰兩項之間插入此兩項的和,可形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷進行構(gòu)造,又可以得到新的數(shù)列.現(xiàn)將數(shù)列1,2進行構(gòu)造,第1次得到數(shù)列1,3,2;第2次得到數(shù)列1,4,3,5,2;依次構(gòu)造,第次得到數(shù)列1,,,,…,,2;記則______,設(shè)數(shù)列的前n項和為,則______15.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.16.若橢圓的長軸是短軸的2倍,且經(jīng)過點,則橢圓的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,,,的對邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長18.(12分)已知橢圓C:的離心率為,短軸的一個端點到右焦點的距離為2.(1)橢圓C的方程;(2)設(shè)直線l:交橢圓C于A,B兩點,且,求m的值.19.(12分)已知:(常數(shù));:代數(shù)式有意義(1)若,求使“”為真命題的實數(shù)的取值范圍;(2)若是成立的充分不必要條件,求實數(shù)的取值范圍20.(12分)如圖,直四棱柱中,底面是邊長為的正方形,點在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個條件中選擇兩個作已知,使得平面,并給出證明.條件①:為的中點;條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.21.(12分)已知數(shù)列中,.(1)證明是等比數(shù)列,并求通項公式;(2)設(shè),記數(shù)列的前n項和為,求使恒成立的最小的整數(shù)k.22.(10分)已知橢圓的離心率為,左、右焦點分別為,,過的直線交橢圓E于A,B兩點.當(dāng)軸時,(1)求橢圓E的方程;(2)求的范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題2、B【解析】一一列出所有基本事件,然后數(shù)出基本事件數(shù)和有利事件數(shù),代入古典概型的概率計算公式,即可得解.【詳解】解:從集合中任取兩個不同元素的取法有、、、、、共6種,其中滿足兩個元素相差的取法有、、共3種.故這兩個元素相差的概率為.故選:B.3、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B4、B【解析】根據(jù)頻率分布直方圖中小矩形的面積和為1可求出,再求出頻率分布直方圖的平均值,即為抽取100人的平均值的估計值,再利用分層抽樣可確定出使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.【詳解】,故①正確;根據(jù)頻率分布直方圖可估計出平均值為,所以估計抽取100人的平均用時13.75小時,②的說法太絕對,故②錯誤;每周使用時間在,,三組內(nèi)的學(xué)生的比例為,用分層抽樣的方法選取8人進行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為,故③正確.故選:B.5、C【解析】根據(jù)雙曲線和直線的對稱性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進行求解即可.【詳解】設(shè)雙曲線的右焦點為F2,過原點傾斜角為的直線為,設(shè)M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關(guān)于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點睛】關(guān)鍵點睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關(guān)鍵.6、A【解析】求出,分析可得,可得出關(guān)于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點、關(guān)于軸對稱,且為線段的中點,則,又因為為等腰直角三角形,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.7、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C8、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結(jié)合幾何體有,進而可知與向量相等的表達式.【詳解】連接,如下圖示:,.故選:B9、A【解析】由拋物線的性質(zhì):過焦點的弦長公式計算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因為,所以,所以,故選:A.10、D【解析】根據(jù)給出的循環(huán)程序進行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D11、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設(shè)出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當(dāng)拋物線的焦點在軸的正半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為;當(dāng)拋物線的焦點在軸的負半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.12、D【解析】根據(jù)直線平行與直線斜率的關(guān)系,即可求解.【詳解】解:與的斜率相等”,“與可能重合,故前者不可以推出后者,若與平行,與的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分條件也非必要條件,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】由全稱命題的否定即可得到答案【詳解】根據(jù)全稱命題的否定,可得為,【點睛】本題考查了含有量詞的命題否定,屬于基礎(chǔ)題14、①.81②.【解析】根據(jù)數(shù)列的構(gòu)造寫出前面幾次得到的新數(shù)列,尋找規(guī)律,構(gòu)造等比數(shù)列,求出通項公式,再進行求和.【詳解】第1次得到數(shù)列1,3,2,此時;第2次得到數(shù)列1,4,3,5,2,此時;第3次得到數(shù)列1,5,4,7,3,8,5,7,2,此時;第4次得到數(shù)列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此時,故81,且故,又,所以數(shù)列是以為首項,公比為3的等比數(shù)列,所以,故,所以故答案為:81,15、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.16、【解析】分類討論焦點在軸與焦點在軸兩種情況.【詳解】因為橢圓經(jīng)過點,當(dāng)焦點在軸時,可知,,所以,所以,當(dāng)焦點在軸時,同理可得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)正弦定理及題中條件,可得,化簡整理,即可求解(2)由的面積為4,結(jié)合(1)中結(jié)論,可得,結(jié)合余弦定理,可得,從而可求的周長【詳解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面積為,∴.由余弦定理得,∴.故的周長為.【點睛】本題考查正弦定理應(yīng)用,余弦定理解三角形,三角形面積公式,考查計算化簡的能力,屬基礎(chǔ)題18、(1);(2).【解析】(1)通過短軸的一個端點到右焦點的距離可知,進而利用離心率的值計算即得結(jié)論;(2)設(shè),聯(lián)立直線與橢圓方程,消去y得到關(guān)于x的一元二次方程,得到根與系數(shù)的關(guān)系,再利用弦長公式即可得出.【詳解】解:(1)由題意可得,解得:,,橢圓C的方程為;(2)設(shè),聯(lián)立,得,,,,解得.【點睛】本題考查了橢圓的標準方程及其性質(zhì)、韋達定理、弦長公式,屬于中檔題.19、(1);(2).【解析】(1)若,分別求出,成立的等價條件,利用為真,求實數(shù)的取值范圍;(2)利用是的充分不必要條件,建立不等式關(guān)系即可求實數(shù)的取值范圍【詳解】:等價于:即;:代數(shù)式有意義等價于:,即,(1)時,即為,若“”為真命題,則,得:故時,使“”為真命題的實數(shù)的取值范圍是,,(2)記集合,,若是成立的充分不必要條件,則是的真子集,因此:,,故實數(shù)的取值范圍是20、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設(shè),連結(jié),,又,分別是,的中點,∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設(shè),連結(jié).因為平面,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)可知,四邊形為正方形,所以.因為,,兩兩垂直,如圖,以為原點,建立空間直角坐標系,則,,,,,,所以,.由(1)知:平面的一個法向量為.設(shè)平面的法向量為,則,令,則.設(shè)平面與平面的夾角為,則,所以平面與平面夾角的余弦值為.21、(1)證明見解析,(2)4【解析】(1)由,得到,利用等比數(shù)列的定義求解;(2)由(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論