河南省長葛市一中2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
河南省長葛市一中2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
河南省長葛市一中2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
河南省長葛市一中2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
河南省長葛市一中2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省長葛市一中2025屆數(shù)學(xué)高二上期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺2.已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,過點F1作直線l交橢圓C于M,N兩點,則的周長為()A.3 B.4C.6 D.83.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.4.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.5.執(zhí)行如圖所示的算法框圖,則輸出的結(jié)果是()A. B.C. D.6.已知三棱錐O—ABC,點M,N分別為線段AB,OC的中點,且,,,用,,表示,則等于()A. B.C. D.7.已知數(shù)列的首項為,且,若,則的取值范圍是()A. B.C. D.8.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象可能是()A. B.C. D.9.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.10.算盤是中國傳統(tǒng)計算工具,是中國人在長期使用算籌的基礎(chǔ)上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數(shù)術(shù)記遺》,其中有云:“珠算控帶四時,經(jīng)緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大?。F(xiàn)在從個位和十位這兩組中隨機選擇往下?lián)芤涣I现椋蠐?粒下珠,得到的數(shù)為質(zhì)數(shù)(除了1和本身沒有其它的約數(shù))的概率是()A. B.C. D.11.從全體三位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為()A. B.C. D.以上全不對12.已知隨機變量服從正態(tài)分布,且,則()A.0.16 B.0.32C.0.68 D.0.84二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)拋物線C:的焦點為F,準(zhǔn)線l與x軸的交點為M,P是C上一點,若|PF|=5,則|PM|=__.14.已知直線,,若,則實數(shù)______15.過圓內(nèi)的點作一條直線,使它被該圓截得的線段最長,則直線的方程是______16.如圖,拋物線上的點與軸上的點構(gòu)成等邊三角形,,,其中點在拋物線上,點的坐標(biāo)為,,猜測數(shù)列的通項公式為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點F為拋物線的焦點,點在拋物線上,且.(1)求該拋物線的方程;(2)若點A在第一象限,且拋物線在點A處的切線交y軸于點M,求的面積.18.(12分)拋物線的焦點為F,過點F的直線交拋物線于A,B兩點(1)若,求直線AB的斜率;(2)設(shè)點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值19.(12分)某地區(qū)2021年清明節(jié)前后3天每天下雨的概率為50%,通過模擬實驗的方法來計算該地區(qū)這3天中恰好有2天下雨的概率.用隨機數(shù)x(,且)表示是否下雨:當(dāng)時表示該地區(qū)下雨,當(dāng)時,表示該地區(qū)不下雨,從隨機數(shù)表中隨機取得20組數(shù)如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根據(jù)上述數(shù)表求出該地區(qū)清明節(jié)前后3天中恰好有2天下雨的概率;(2)從2012年到2020年該地區(qū)清明節(jié)當(dāng)天降雨量(單位:)如表:(其中降雨量為0表示沒有下雨).時間2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221經(jīng)研究表明:從2012年至2021年,該地區(qū)清明節(jié)有降雨的年份的降雨量y與年份t成線性回歸,求回歸直線方程,并計算如果該地區(qū)2021年()清明節(jié)有降雨的話,降雨量為多少?(精確到0.01)參考公式:,參考數(shù)據(jù):,,,20.(12分)在正方體中,,,分別是,,的中點.(1)證明:平面平面;(2)求直線與所成角的正切值.21.(12分)已知直線過點,且其傾斜角是直線的傾斜角的(1)求直線的方程;(2)若直線與直線平行,且點到直線的距離是,求直線的方程22.(10分)已知圓,直線.(1)當(dāng)為何值時,直線與圓相切;(2)當(dāng)直線與圓相交于、兩點,且時,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A2、D【解析】由的周長為,結(jié)合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據(jù)橢圓的定義,可得的周長為故選:D.3、B【解析】根據(jù)拋物線和寫出焦點坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.4、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時,的最小值為-8,故選D.5、B【解析】列舉出循環(huán)的每一步,利用裂項相消法可求得輸出結(jié)果.【詳解】第一次循環(huán),不成立,,;第二次循環(huán),不成立,,;第三次循環(huán),不成立,,;以此類推,最后一次循環(huán),不成立,,.成立,跳出循環(huán)體,輸出.故選:B.6、A【解析】利用空間向量基本定理進行計算.【詳解】.故選:A7、C【解析】由題意,得到,利用疊加法求得,結(jié)合由,轉(zhuǎn)化為恒成立,分,和三種情況討論,即可求解.【詳解】因為,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,當(dāng)時,,不等式可化為恒成立,所以;當(dāng)時,,不等式可化為恒成立;當(dāng)時,,不等式可化為恒成立,所以,綜上可得,實數(shù)的取值范圍是.故選:C.8、A【解析】根據(jù)原函數(shù)圖象判斷出函數(shù)單調(diào)性,由此判斷導(dǎo)函數(shù)的圖象.【詳解】原函數(shù)在上從左向右有增、減、增,個單調(diào)區(qū)間;在上遞減.所以導(dǎo)函數(shù)在上從左向右應(yīng)為:正、負、正;在上應(yīng)為負.所以A選項符合.故選:A9、D【解析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因為所有的基本事件共有種,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D10、B【解析】根據(jù)古典概型概率計算公式,計算出所求的概率.【詳解】依題有,算盤所表示的數(shù)可能有:17,26,8,35,62,71,80,53,其中是質(zhì)數(shù)的有:17,71,53,故所求事件的概率為故選:B11、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數(shù)中任取一數(shù)共有900種取法,以2為底的對數(shù)也是正整數(shù)的三位數(shù)有,共3個,所以以此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為,故選:B12、C【解析】根據(jù)對稱性以及概率之和等于1求出,再由即可得出答案.【詳解】∵隨機變量服從正態(tài)分布,∴故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進而得解.【詳解】由拋物線的方程可得焦點,準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.14、【解析】由直線垂直可得到關(guān)于實數(shù)a的方程,解方程即可.【詳解】由直線垂直可得:,解得:.故答案為:15、【解析】當(dāng)直線l過圓心時滿足題意,進而求出答案.【詳解】圓的標(biāo)準(zhǔn)方程為:,圓心,當(dāng)l過圓心時滿足題意,,所以l的方程為:.故答案為:.16、【解析】求出,,,,,,可猜測,利用累加法,即可求解【詳解】的方程為,代入拋物線可得,同理可得,,,,可猜測,證明:記三角形的邊長為,由題意可知,當(dāng)時,在拋物線上,可得,當(dāng)時,,兩式相減得:化簡得:,則數(shù)列是等差數(shù)列,,,,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)10.【解析】(1)由根據(jù)拋物線的定義求出可得拋物線方程;(2)求出拋物線過點A的切線,得出點M的坐標(biāo)即可求三角形面積.【小問1詳解】由拋物線的定義可知,即,拋物線的方程為.【小問2詳解】,且A在第一象限,,即A(4,4),顯然切線的斜率存在,故可設(shè)其方程為,由,消去得,即,令,解得,切線方程為.令x=0,得,即,又,,.18、(1);(2)面積最小值是4【解析】本題主要考查拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、直線的斜率等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,依題意F(1,0),設(shè)直線AB的方程為.將直線AB的方程與拋物線的方程聯(lián)立,得,由此能夠求出直線AB的斜率;第二問,由點C與原點O關(guān)于點M對稱,得M是線段OC的中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于,由此能求出四邊形OACB的面積的最小值試題解析:(1)依題意知F(1,0),設(shè)直線AB方程為.將直線AB的方程與拋物線的方程聯(lián)立,消去x得.設(shè),,所以,.①因為,所以.②聯(lián)立①和②,消去,得所以直線AB的斜率是(2)由點C與原點O關(guān)于點M對稱,得M是線段OC中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于因為,所以當(dāng)m=0時,四邊形OACB的面積最小,最小值是4考點:拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、直線的斜率19、(1),;(2);該地區(qū)2020年清明節(jié)有降雨的話,降雨量為20.2mm【解析】(1)利用概率模擬求概率;(2)套用公式求回歸直線方程即可.【詳解】解:(1)由題意可知,,解得,即表示下雨,表示不下雨,所給的20組數(shù)據(jù)中714,740,491,272,073,445,435,027,共8組表示3天中恰有兩天下雨,故所求的概率為;(2)由題中所給的數(shù)據(jù)可得,,所以,,所以回歸方程為,當(dāng)時,,所以該地區(qū)2020年清明節(jié)有降雨的話,降雨量為20.2mm【點睛】求線性回歸方程的步驟:①求出;②套公式求出;③寫出回歸方程;④利用回歸方程進行預(yù)報;20、(1)證明見解析(2)【解析】(1)分別證明∥平面,∥平面,最后利用面面平行的判定定理證明平面∥平面即可;(2)由∥得即為直線與所成角,在直角△即可求解.【小問1詳解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小問2詳解】由(1)得∥,∴為直線MN與所成的角,設(shè)正方體的棱長為a,在△中,,,∴.21、(1);(2)或【解析】(1)先求得直線的傾斜角,由此求得直線的傾斜角和斜率,進而求得直線的方程;(2)設(shè)出直線的方程,根據(jù)點到直線的距離列方程,由此求解出直線的方程【詳解】解(1)直線的傾斜角為,∴直線的傾斜角為,斜率為,又直線過點,∴直線的方程為,即;(2)設(shè)直線的方程為,則點到直線的距離,解得或∴直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論