![2025年高考數(shù)學(xué)一輪知識(shí)點(diǎn)復(fù)習(xí):用樣本估計(jì)總體-專項(xiàng)訓(xùn)練【含解析】_第1頁(yè)](http://file4.renrendoc.com/view12/M07/32/3F/wKhkGWcJmgiAYZTdAAG_adaaVSM492.jpg)
![2025年高考數(shù)學(xué)一輪知識(shí)點(diǎn)復(fù)習(xí):用樣本估計(jì)總體-專項(xiàng)訓(xùn)練【含解析】_第2頁(yè)](http://file4.renrendoc.com/view12/M07/32/3F/wKhkGWcJmgiAYZTdAAG_adaaVSM4922.jpg)
![2025年高考數(shù)學(xué)一輪知識(shí)點(diǎn)復(fù)習(xí):用樣本估計(jì)總體-專項(xiàng)訓(xùn)練【含解析】_第3頁(yè)](http://file4.renrendoc.com/view12/M07/32/3F/wKhkGWcJmgiAYZTdAAG_adaaVSM4923.jpg)
![2025年高考數(shù)學(xué)一輪知識(shí)點(diǎn)復(fù)習(xí):用樣本估計(jì)總體-專項(xiàng)訓(xùn)練【含解析】_第4頁(yè)](http://file4.renrendoc.com/view12/M07/32/3F/wKhkGWcJmgiAYZTdAAG_adaaVSM4924.jpg)
![2025年高考數(shù)學(xué)一輪知識(shí)點(diǎn)復(fù)習(xí):用樣本估計(jì)總體-專項(xiàng)訓(xùn)練【含解析】_第5頁(yè)](http://file4.renrendoc.com/view12/M07/32/3F/wKhkGWcJmgiAYZTdAAG_adaaVSM4925.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
用樣本估計(jì)總體-專項(xiàng)訓(xùn)練【原卷版】
基礎(chǔ)鞏固練
1.已知數(shù)據(jù)%i,%2,…,%n是某市九(nN3,71CN*)個(gè)普通職工的年收入(單位:元),
若去掉一個(gè)最高年收入和一個(gè)最低年收入,則新數(shù)據(jù)與原數(shù)據(jù)相比,一定不變的
數(shù)字特征是().
A.平均數(shù)B.中位數(shù)C.方差D.極差
2.(2024.九省適應(yīng)性測(cè)試)樣本數(shù)據(jù)16,24,14,10,20,30,12,14,40的中位數(shù)為().
A.14B.16
C.18D.20
3.(改編)如圖,這是根據(jù)某市6月1日至6月10日的最低氣溫(單位:。0
的情況繪制的折線統(tǒng)計(jì)圖,由圖可知這10天的最低氣溫的第40百分位數(shù)是().
溫度/工
O12345678910日期
A.20.5℃B.21℃C.21.5℃D.22℃
4.甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,10天中,兩臺(tái)機(jī)床每天出的次品數(shù)統(tǒng)計(jì)
如表所示.
甲0102203124
乙2211121101
可,次分別表示甲、乙兩組數(shù)據(jù)的平均數(shù),S/,S:分別表示甲、乙兩組數(shù)據(jù)的方
差,則下列選項(xiàng)正確的是().
A.—x2,sf>siB.xr>x2,sf>si
J*Ss
C.<X21>2D.>x2,sf<S2
5.[i](原創(chuàng))已知一組數(shù)據(jù)%1,久2,久3,…,%的平均數(shù)為3,方差為點(diǎn)那么另一
組數(shù)據(jù)6%i+2,6%2+2,6X3+2,-,6&+2的平均數(shù)和方差分別為().
A.6,B.6,1C.18,1D.20,4
6.(原創(chuàng))某班有30名男生同學(xué),高一入校體測(cè)時(shí),經(jīng)過計(jì)算得到平均身高為
170cm,標(biāo)準(zhǔn)差為s,后來發(fā)現(xiàn)錄入有錯(cuò)誤,甲同學(xué)185cm誤記為165cm,乙同
學(xué)175cm誤記為195cm,更正后重新計(jì)算標(biāo)準(zhǔn)差則s與s1的大小關(guān)系是().
A.,s—S]B.s<SiC.s>S]D.不能確定
7.某市政府為了了解居民節(jié)約用水的意識(shí),隨機(jī)調(diào)查了100戶居民某年的月均
用水量數(shù)據(jù)(單位:立方米),制成如圖所示的頻率分布直方圖.下列說法正確
的是().
八頻率/組距
0.5-............r—1
0.4-------------------
0.3..........-I......................
0.2--T~
0.1--------------……-----------------------
O0.511.522.533.544.5用水量
/立方米
A.該組樣本數(shù)據(jù)的極差是4立方米
B.可估計(jì)全市居民用戶月均用水量的中位數(shù)是2.25立方米
C.可估計(jì)全市居民用戶月均用水量的眾數(shù)是2立方米
D.可估計(jì)全市居民用戶中月均用水量超過3立方米的占15%
8.某市入夏的標(biāo)準(zhǔn)是立夏之后,連續(xù)五天的日平均氣溫不低于22吧立夏之后,
測(cè)得連續(xù)五天的平均氣溫?cái)?shù)據(jù)滿足如下條件,其中能斷定該市入夏的是().
A.總體均值為25。。中位數(shù)為23°CB.總體均值為25。??傮w方差大于0
C.總體中位數(shù)為23?,眾數(shù)為25久D.總體均值為25。??傮w方差為1
綜合提升練
9.(多選題)某地旅游部門從2022年到該地旅游的游客中隨機(jī)抽取部分游客進(jìn)
行調(diào)查,得到各年齡段游客的人數(shù)和旅游方式如圖所示,則下列結(jié)論不正確的是
().
自助游比率/%
30
25
老年人20
.20%)
中年人
35%
O老年人中年人青年人年齡段
A.估計(jì)2022年到該地旅游的游客選擇自助游的中年人的人數(shù)多于選擇自助游
的青年人人數(shù)的一半
B.估計(jì)2022年到該地旅游的游客選擇自助游的青年人的人數(shù)占總游客人數(shù)的
13.5%
C.估計(jì)2022年到該地旅游的游客選擇自助游的老年人和中年人的人數(shù)之和比
選擇自助游的青年人多
D.估計(jì)2022年到該地旅游的游客選擇自助游的比率為25%
10.(多選題)某校為了了解學(xué)生的身體素質(zhì),對(duì)2023屆初三年級(jí)所有學(xué)生做
一分鐘仰臥起坐的個(gè)數(shù)情況進(jìn)行了數(shù)據(jù)統(tǒng)計(jì),結(jié)果如圖1所示.該校2024屆初三
學(xué)生人數(shù)較2023屆初三學(xué)生人數(shù)上升了10%,2024屆初三學(xué)生做一分鐘仰臥起
坐的個(gè)數(shù)分布條形圖如圖2所示,則().
60,70)[70,80]
50,60)15%5%
25%
[20,30)
10%
40,50)30,40)
25%20%
頻率圖1
n
45^
/
z
n
40^
z
z
nz
35^/
/^
zu
3n
0^
z
/
25n
^
/
z
20n
^
z
z
15n/
V^
/u
10n
^
/
z
5n
^
/
z
xO
c個(gè)
[20,30)[30,40)[40,50)[50,60)[60,70)[70,80]數(shù)
圖2
A.該校2023屆初三年級(jí)學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)在[30,60)內(nèi)的學(xué)生人數(shù)
占70%
B.該校2024屆初三學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)在[60,80]內(nèi)的學(xué)生人數(shù)比
2023屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)在[60,80]內(nèi)的學(xué)生人數(shù)的2.2倍還多
C.該校2024屆初三學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)和2023屆初三學(xué)生做一分鐘
仰臥起坐個(gè)數(shù)的中位數(shù)均在[50,60)內(nèi)
D.相比2023屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)不小于50的人數(shù)占比,2024屆
初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)不小于50的人數(shù)占比增加
11.某班為了了解學(xué)生每月購(gòu)買零食的支出情況,利用分層隨機(jī)抽樣抽取了一個(gè)
9人的樣本統(tǒng)計(jì)如表所示:
學(xué)生數(shù)平均支出/元支出平方的累加值方差
女生4"I*端=53800225
i=l
男生5片1°6就=577。。304
i=l
估計(jì)全班學(xué)生每月購(gòu)買零食的平均支出的方差為,(精確到小數(shù)點(diǎn)后一
位)
12.(雙空題)已知在一次文藝比賽中,12名專業(yè)人士和12名觀眾代表各組成
一個(gè)評(píng)委小組,給參賽選手打分,下面是兩組評(píng)委對(duì)同一選手的打分:
小組A42,45,48,46,52,47,49,55,42,51,47,45.
小組B:55,36,70,66,75,49,46,68,42,62,58,47.
小組B的第75百分位數(shù)是,從評(píng)委打分相似性上看更像專業(yè)人士組成的
小組是組.
應(yīng)用情境練
13.某科研機(jī)構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量%(單位:克)與
藥物功效y(單位:藥物單位)之間具有關(guān)系式y(tǒng)=9%-/.檢測(cè)這種藥品一個(gè)批
次的6個(gè)樣本,得到成分甲的平均值為5克,標(biāo)準(zhǔn)差為招,則估計(jì)這批中醫(yī)藥的
藥物功效的平均值為?一
14.已知甲、乙兩班在我校舉行合唱比賽中,7位評(píng)委的評(píng)分情況如下:
甲:78,78,88,X,80,95,96.
乙:76,80,82,y,91,93,96.
其中甲班成績(jī)的中位數(shù)是81,乙班成績(jī)的平均數(shù)是86.若正實(shí)數(shù)a,匕滿足a,G,b
成等差數(shù)列且80-久,G,80-y成等比數(shù)列,則:+:的最小值為
創(chuàng)新拓展練
15.已知一組數(shù)據(jù)為1,%2,%3,…,%兀的平均數(shù)為高方差為s2.若3%1+1,3%2+1,
3久3+1,…,3&+1的平均數(shù)比方差大4,則s2—f的最大值為
16.某學(xué)校有800名學(xué)生,為了了解學(xué)生對(duì)《民法典》的認(rèn)識(shí)程度,選取了100
名學(xué)生進(jìn)行測(cè)試,制成如圖所示的頻率分布直方圖.
(1)求TH的值;
(2)估計(jì)抽查的學(xué)生測(cè)試成績(jī)的中位數(shù);(結(jié)果用分?jǐn)?shù)形式表示)
(3)如果抽查的測(cè)試平均分超過萬(wàn)分,那么就表示該學(xué)校通過測(cè)試,試判斷該
校能否通過測(cè)試.
用樣本估計(jì)總體-專項(xiàng)訓(xùn)練【解析版】
基礎(chǔ)鞏固練
1.已知數(shù)據(jù)為1,久2,…,%n是某市n(n23,71eN*)個(gè)普通職工的年收入(單位:元),
若去掉一個(gè)最高年收入和一個(gè)最低年收入,則新數(shù)據(jù)與原數(shù)據(jù)相比,一定不變的
數(shù)字特征是(B).
A.平均數(shù)B.中位數(shù)C.方差D.極差
[解析]由中位數(shù)的定義知,去掉最高與最低后,新數(shù)據(jù)與原數(shù)據(jù)相比,中位數(shù)一
定不變.故選B.
2.(2024.九省適應(yīng)性測(cè)試)樣本數(shù)據(jù)16,24,14,10,20,30,12,14,40的中位數(shù)為(B).
A.14B.16
C.18D.20
[解析]將這些數(shù)據(jù)從小到大排列可得10,12,14,14,16,20,24,30,40.故其中位數(shù)為
16.故選B.
3.(改編)如圖,這是根據(jù)某市6月1日至6月10日的最低氣溫(單位:。0
的情況繪制的折線統(tǒng)計(jì)圖,由圖可知這10天的最低氣溫的第40百分位數(shù)是
(C).
溫度/工
O12345678910日期
A.20.5℃B.21℃C.21.5℃D.22℃
[解析]由折線圖可知,這10天的最低氣溫按照從小到大排列為19,20,21,21,
22,22,23,24,24,24,因?yàn)楣灿?0個(gè)數(shù)據(jù),所以10x40%=4,是整數(shù),
則這10天的最低氣溫的第40百分位數(shù)是第4和第5個(gè)最低氣溫的平均數(shù),即
V=21.5(。(2).故選(1
4.甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,10天中,兩臺(tái)機(jī)床每天出的次品數(shù)統(tǒng)計(jì)
如表所示.
甲01022c)3124
乙22111211c)1
立,也分別表示甲、乙兩組數(shù)據(jù)的平均數(shù),s苒,s:分別表示甲、乙兩組數(shù)據(jù)的方
差,則下列選項(xiàng)正確的是(B).
?SS
A.=±2,Si>S2B.xr>%212
C.%1<X2ysl>S2D.吊>元2,sl<S2
0+1+0+2+2+0+3+1+2+4
[解析]由表格數(shù)據(jù)知,=
101.5,%2
2+2+1+1+1+2+1+14-0+1"c
-----------------=l.Z,
10
?,?>第2,
??Y=2x[(0—1.5)2x3+(1-1.5)2x2+(2-1.5)2x3+(3-1.5)2+
(4-1.5)2]=1.65,s:=卷x[(2—1.2)2x3+(l-1.2)2x6+(0-1.2)2]=
0.36,
???s:>s:,故選B.
5.[i](原創(chuàng))已知一組數(shù)據(jù)久i,g,與,???,%的平均數(shù)為3,方差為點(diǎn)那么另一
組數(shù)據(jù)6%i+2,6久2+2,6%3+2,…,6期+2的平均數(shù)和方差分別為(D).
A.6,B.6,1C.18,1D.20,4
[解析]由數(shù)據(jù)為1,%2,%3,…,%?1的平均數(shù)為3,方差為2,可得數(shù)據(jù)6久1+2,6%2+2,
6處+2,…,6期+2的平均數(shù)為6x3+2=20,方差為62x;=4.故選D.
6.(原創(chuàng))某班有30名男生同學(xué),高一入校體測(cè)時(shí),經(jīng)過計(jì)算得到平均身高為
170cm,標(biāo)準(zhǔn)差為s,后來發(fā)現(xiàn)錄入有錯(cuò)誤,甲同學(xué)185cm誤記為165cm,乙同
學(xué)175cm誤記為195cm,更正后重新計(jì)算標(biāo)準(zhǔn)差si,則s與si的大小關(guān)系是(C).
A.s=S]B.s<SiC.s>S]D.不能確定
[解析]因?yàn)榧淄瑢W(xué)185cm誤記為165cm,乙同學(xué)175cm誤記為195cm,所以身
高總值不變,故平均身高不變,設(shè)除甲、乙以外的其余28人的身高分別為
…,為28,平均數(shù)為禮所以S=
總J(165—元)2+(195—君2+%—君2+(久2一君2+…+(g8—元)2,
S1二9J(185—8)2+(175—7)2+(X1—元)2+(%2—元)2+…+(久28—君2,
因?yàn)閇(165-x)2+(195-元)2]-[(185-%)2+(175-x)2]=[(165-170)2+
(195-170)2]-[(185-170)2+(175-170)2]
=52+252-152-52=400>0,
所以s>s>故選C.
7.某市政府為了了解居民節(jié)約用水的意識(shí),隨機(jī)調(diào)查了100戶居民某年的月均
用水量數(shù)據(jù)(單位:立方米),制成如圖所示的頻率分布直方圖.下列說法正確
的是(D).
八頻率/組距
0.5--..........
0.4---------E.
0.3.....-I——一■…一一
0.2--1~■
0.1----------------------------
O0.511.522.533.544.5用水量
/立方米
A.該組樣本數(shù)據(jù)的極差是4立方米
B.可估計(jì)全市居民用戶月均用水量的中位數(shù)是2.25立方米
C.可估計(jì)全市居民用戶月均用水量的眾數(shù)是2立方米
D.可估計(jì)全市居民用戶中月均用水量超過3立方米的占15%
[解析]對(duì)于A,由頻率分布直方圖無法得到這組數(shù)據(jù)的最大值和最小值,故無法
準(zhǔn)確判斷這組數(shù)據(jù)的極差,故A錯(cuò)誤;
對(duì)于B,因?yàn)?0.2+0.3+04)x0.5=0.45,0.45+0.5X0.5=0.7,設(shè)中位數(shù)為
x,由0.45+0.5x(%—2)=0.5得%=2.1,故B錯(cuò)誤;
對(duì)于C,眾數(shù)為衛(wèi)=2.25,故C錯(cuò)誤;
2
對(duì)于D,月均用水量超過3立方米的頻率為(0.1+0.1+0.1)x0.5=0.15,故D正
確.故選D.
8.某市入夏的標(biāo)準(zhǔn)是立夏之后,連續(xù)五天的日平均氣溫不低于22。(1立夏之后,
測(cè)得連續(xù)五天的平均氣溫?cái)?shù)據(jù)滿足如下條件,其中能斷定該市入夏的是(D).
A.總體均值為25。。中位數(shù)為23°CB.總體均值為25。??傮w方差大于0
C.總體中位數(shù)為23。(:,眾數(shù)為25眩D.總體均值為25。。總體方差為1
[解析]對(duì)于A,總體均值為25。。中位數(shù)為23。??赡艹霈F(xiàn)低于22。(2的情況,故
A不正確;
對(duì)于B,當(dāng)總體方差大于0時(shí),不知道總體方差的具體數(shù)值,因此不能確定數(shù)據(jù)
的波動(dòng)大小,故B不正確;
對(duì)于C,中位數(shù)和眾數(shù)也不能確定,故C不正確:
對(duì)于D,當(dāng)總體均值為25。??傮w方差為1,根據(jù)方差公式s2=](/—制2+
(%2—MT+(第3—元/+(孫一元)2+(%—元產(chǎn)],因?yàn)榉讲顬?,歹=25,所以若
存在有一^氣溫低于22℃,則方差大于1,或者通過假設(shè)汽2=%3=%4=工5=25,
則1=式光1-25)2,打=25-芯或=25+遮(舍去),此時(shí)五天最低溫度
為25—遮°C,大于22。(:,故D正確.故選D.
綜合提升練
9.(多選題)某地旅游部門從2022年到該地旅游的游客中隨機(jī)抽取部分游客進(jìn)
行調(diào)查,得到各年齡段游客的人數(shù)和旅游方式如圖所示,則下列結(jié)論不正確的是
(CD).
O老年人中年人青年人年齡段
A.估計(jì)2022年到該地旅游的游客選擇自助游的中年人的人數(shù)多于選擇自助游
的青年人人數(shù)的一半
B.估計(jì)2022年到該地旅游的游客選擇自助游的青年人的人數(shù)占總游客人數(shù)的
13.5%
C.估計(jì)2022年到該地旅游的游客選擇自助游的老年人和中年人的人數(shù)之和比
選擇自助游的青年人多
D.估計(jì)2022年到該地旅游的游客選擇自助游的比率為25%
[解析]設(shè)2022年到該地旅游的游客總?cè)藬?shù)為a,由題意可知游客中老年人、中年
人、青年人的人數(shù)分別為0.2a,0.35a,0.45a,其中選擇自助游的老年人、中年
人、青年人的人數(shù)分別為0.04a,0.0875a,0.135a.
■\
因?yàn)?.0875a>0.135ax-=0.0675a,所以A正確;
2022年到該地旅游的游客選擇自助游的青年人的人數(shù)與總游客人數(shù)的比值為
0.135ax100%=13.5%,所以B正確;
a
因?yàn)?.04a+0.0875a=0.1275a<0.135a,所以C不正確;
2022年到該地旅游的游客選擇自助游的比率為°°4a+°Q875a+0135a乂10Q%=
a
26.25%,所以D不正確.故選CD.
10.(多選題)某校為了了解學(xué)生的身體素質(zhì),對(duì)2023屆初三年級(jí)所有學(xué)生做
一分鐘仰臥起坐的個(gè)數(shù)情況進(jìn)行了數(shù)據(jù)統(tǒng)計(jì),結(jié)果如圖1所示.該校2024屆初三
學(xué)生人數(shù)較2023屆初三學(xué)生人數(shù)上升了10%,2024屆初三學(xué)生做一分鐘仰臥起
坐的個(gè)數(shù)分布條形圖如圖2所示,則(ABD).
60,70)[70,80]
50,60)15%5%
25%
[20,30)
10%
40,50)30,40)
25%20%
頻率圖1
45n7
^Z
z
z^也%
40n/
^z
/^
zu
35nz
^/
/^34%
zu
30n
^
z
25^z
z
/x
^
/u
20/
^
15u
n/
z
v^
10zuU%
n/
^z
/^
5zu7%
n/
^z
/^4%
zui%
x
cn個(gè)
[20,30)[30,40)[40,50)[50,60)[60,70)[70,80]數(shù)
圖2
A.該校2023屆初三年級(jí)學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)在[30,60)內(nèi)的學(xué)生人數(shù)
占70%
B.該校2024屆初三學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)在[60,80]內(nèi)的學(xué)生人數(shù)比
2023屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)在[60,80]內(nèi)的學(xué)生人數(shù)的2.2倍還多
C.該校2024屆初三學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)和2023屆初三學(xué)生做一分鐘
仰臥起坐個(gè)數(shù)的中位數(shù)均在[50,60)內(nèi)
D.相比2023屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)不小于50的人數(shù)占比,2024屆
初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)不小于50的人數(shù)占比增加
[解析]2023屆初三年級(jí)學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)在[30,60)內(nèi)的學(xué)生人數(shù)占
比為20%+25%+25%=70%,故A正確;
由于2024屆初三學(xué)生人數(shù)較2023屆上升了10%,假設(shè)2023屆初三學(xué)生人數(shù)為
a(a>0),
則2023屆初三學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)在[60,80]內(nèi)的學(xué)生人數(shù)為0.2a,
2024屆初三學(xué)生做一分鐘仰臥起坐的個(gè)數(shù)在[60,80]內(nèi)的學(xué)生人數(shù)為aX
(1+10%)x(34%+7%)=0.451a,
則0,451a>0.2ax2.2,故B正確;
2023屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)的中位數(shù)在[40,50)內(nèi),
2024屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)的中位數(shù)在[50,60)內(nèi),故C錯(cuò)誤;
2023屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)不小于50的人數(shù)占25%+15%+5%=
45%,
2024屆初三學(xué)生做一分鐘仰臥起坐個(gè)數(shù)不小于50的人數(shù)占41%+34%+7%=
82%,因?yàn)?2%>45%,故D正確.故選ABD.
11.某班為了了解學(xué)生每月購(gòu)買零食的支出情況,利用分層隨機(jī)抽樣抽取了一個(gè)
9人的樣本統(tǒng)計(jì)如表所示:
學(xué)生數(shù)平均支出/元支出平方的累加值方差
女生4工=115£*=53800225
i=l
304
7=106—£療=57700
男生5
1=1
估計(jì)全班學(xué)生每月購(gòu)買零食的平均支出的方差為期’.(精確到小數(shù)點(diǎn)后一位)
[解析]依題意,設(shè)女生每月購(gòu)買零食的支出的樣本為修,平均數(shù)為元=115;男生
每月購(gòu)買零食的支出的樣本為力,平均數(shù)為歹=106;男女生每月購(gòu)買零食的支
出的平均數(shù)為2,方差為s2.
則,=4x+5y_4X115+5X106110,
99
45
又2g=53800,2W=57700,
i=li=l
191/4*5\1
所以s2=22932*+2W_no2=2x(53800+57700)-
9t=l9Vi=li=l'9
1102~288.9,
所以估計(jì)全班學(xué)生每月購(gòu)買零食的平均支出的方差為288.9.
12.(雙空題)已知在一次文藝比賽中,12名專業(yè)人士和12名觀眾代表各組成
一個(gè)評(píng)委小組,給參賽選手打分,下面是兩組評(píng)委對(duì)同一選手的打分:
小組A42,45,48,46,52,47,49,55,42,51,47,45.
小組8:55,36,70,66,75,49,46,68,42,62,58,47.
小組B的第75百分位數(shù)是67,從評(píng)委打分相似性上看更像專業(yè)人士組成的小組
是A組.
[解析]將小組B的數(shù)據(jù)進(jìn)行排序得到36,42,46,47,49,55,58,62,66,68,70,75,又12X
75%=9,
所以B小組的第75百分位數(shù)是"吧=67.
1
=—X(42+45+48+46+52+47+49+55+42+51+47+45)工47,
sj=^X[(42-47)2+(45-47)2+???+(45-47)2]?14.08.
瑪=點(diǎn)X(55+36+70+66+75+49+46+68+42+62+58+47)?56,
sj=^X[(55-56)2+(36-56)2+…+(47-56)2]=139.
sj<sj,故4小組更像專業(yè)人士組成的小組.
應(yīng)用情境練
13.某科研機(jī)構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量久(單位:克)與
藥物功效y(單位:藥物單位)之間具有關(guān)系式y(tǒng)=9%--.檢測(cè)這種藥品一個(gè)批
次的6個(gè)樣本,得到成分甲的平均值為5克,標(biāo)準(zhǔn)差為招,則估計(jì)這批中醫(yī)藥的
藥物功效的平均值為1Z
[解析]設(shè)這6個(gè)樣本中成分甲的含量分別為%I,%2,%3,…,%6,平均值為元,
222
則(%1—X)+(%2—%)+卜(久6—君之=+%24-----卜%6)—6%=6X
(⑹2=18,
所以好+%2+—H^6—168,
于是以+力+…+=9(%1+%2+?--+%6)-(%1+%2+-+瞪)=102,
則歹="+為+…+以=17.
6
14.已知甲、乙兩班在我校舉行合唱比賽中,7位評(píng)委的評(píng)分情況如下:
甲:78,78,88,X,80,95,96.
乙:76,80,82,y,91,93,96.
其中甲班成績(jī)的中位數(shù)是81,乙班成績(jī)的平均數(shù)是86.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保安臨時(shí)工勞動(dòng)合同年
- 廣告公司設(shè)計(jì)合同
- 賓館經(jīng)營(yíng)權(quán)質(zhì)押合同
- 內(nèi)蒙古汽車租賃合同
- 三農(nóng)服務(wù)智能化平臺(tái)構(gòu)建方案
- 藥物研發(fā)委托服務(wù)協(xié)議
- 三農(nóng)政策支持措施落實(shí)方案
- 內(nèi)墻抹灰班組勞務(wù)分包合同
- 農(nóng)業(yè)生產(chǎn)信用制度完善方案
- 基于人工智能的工業(yè)自動(dòng)化應(yīng)用實(shí)踐指導(dǎo)書
- DBJ∕T 13-478-2024 福建省瓶裝液化石油氣信息管理與數(shù)據(jù)采集技術(shù)標(biāo)準(zhǔn)
- 2025年度院感管理工作計(jì)劃(后附表格版)
- 化肥銷售工作計(jì)劃
- 2024浙江華數(shù)廣電網(wǎng)絡(luò)股份限公司招聘精英18人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年社區(qū)警務(wù)規(guī)范考試題庫(kù)
- “國(guó)家示范性高等職業(yè)院校建設(shè)計(jì)劃”骨干高職院校項(xiàng)目建設(shè)任務(wù)書
- 2025中考英語(yǔ)作文預(yù)測(cè):19個(gè)熱點(diǎn)話題及范文
- 第10講 牛頓運(yùn)動(dòng)定律的綜合應(yīng)用(一)(講義)(解析版)-2025年高考物理一輪復(fù)習(xí)講練測(cè)(新教材新高考)
- 2024春節(jié)后復(fù)工消防安全專題培訓(xùn)
- 班組建設(shè)與班組長(zhǎng)管理培訓(xùn)
- 三級(jí)老年病醫(yī)院評(píng)審標(biāo)準(zhǔn)實(shí)施細(xì)則(2020年版)
評(píng)論
0/150
提交評(píng)論