版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
西藏民族大學(xué)附屬中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若方程表示雙曲線,則的取值范圍是()A.或 B.C.或 D.2.下列關(guān)于斜二測畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④3.的展開式中,常數(shù)項為()A. B.C. D.4.用這3個數(shù)組成沒有重復(fù)數(shù)字的三位數(shù),則事件“這個三位數(shù)是偶數(shù)”與事件“這個三位數(shù)大于342”()A.是互斥但不對立事件 B.不是互斥事件C.是對立事件 D.是不可能事件5.是等差數(shù)列,且,,則的值()A. B.C. D.6.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d7.直線的傾斜角為()A.0 B.C. D.8.設(shè)拋物線的焦點為,點為拋物線上一點,點坐標(biāo)為,則的最小值為()A. B.C. D.9.4位同學(xué)報名參加四個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有()A.24種 B.81種C.64種 D.256種10.已知拋物線的焦點為,為拋物線上第一象限的點,若,則直線的傾斜角為()A. B.C. D.11.某救援隊有5名隊員,其中有1名隊長,1名副隊長,在一次救援中需隨機分成兩個行動小組,其中一組2名隊員,另一組3名隊員,則正、副隊長不在同一組的概率為()A. B.C. D.12.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,,則___________.14.已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)求的單調(diào)區(qū)間;15.圓錐曲線的焦點在軸上,離心率為,則實數(shù)的值是__________.16.在中,,,,則此三角形的最大邊長為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點分別為,三個頂點(左、右頂點和上頂點)構(gòu)成的三角形的面積為,離心率為方程的根.(1)求橢圓方程;(2)橢圓的一個內(nèi)接平行四邊形的一組對邊分別過點和,如圖,若這個平行四邊形面積為,求平行四邊形的四個頂點的縱坐標(biāo)的乘積.18.(12分)已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點在橢圓上(1)經(jīng)過點M(1,)作一直線交橢圓于AB兩點,若點M為線段AB的中點,求直線的斜率;(2)設(shè)橢圓C的上頂點為P,設(shè)不經(jīng)過點P的直線與橢圓C交于C,D兩點,且,求證:直線過定點19.(12分)某校高二年級全體學(xué)生參加了一次數(shù)學(xué)測試,學(xué)校利用簡單隨機抽樣方法從甲班、乙班各抽取五名同學(xué)的數(shù)學(xué)測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學(xué)中隨機抽出兩名,求此兩人都來自甲班的概率.20.(12分)已知橢圓:,是坐標(biāo)原點,,分別為橢圓的左、右焦點,點在橢圓上,過作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設(shè)直線:與橢圓交于,兩點,且直線,,的斜率之和為0(其中為坐標(biāo)原點)①求證:直線經(jīng)過定點,并求出定點坐標(biāo):②求面積的最大值21.(12分)已知橢圓的左焦點與拋物線的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓于兩點,點,且為定值(1)求橢圓的方程;(2)求面積的最大值22.(10分)已知函數(shù)(1)求的圖象在點處的切線方程;(2)求在上的最大值與最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由和的分母異號可得【詳解】由題意,解得或故選:A2、B【解析】根據(jù)斜二側(cè)直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結(jié)論【詳解】由斜二測畫法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據(jù)平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據(jù)兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯誤;根據(jù)平行于x軸的長度不變,平行于y軸的長度減半知,正方形的直觀圖不再是正方形,所以④錯誤.故選:B.3、A【解析】寫出展開式通項,令的指數(shù)為零,求出參數(shù)的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數(shù)項為.故選:A.4、B【解析】根據(jù)題意列舉出所有可能性,進而根據(jù)各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個沒有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個事件不是互斥事件,也不是對立事件.故選:B.5、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算【詳解】因為是等差數(shù)列,所以,,也成等差數(shù)列,所以故選:B6、A【解析】結(jié)合不等式的性質(zhì)確定正確答案.【詳解】A選項,若且,則,所以A選項正確.B選項,若,則,所以B選項錯誤.C選項,如,但,所以C選項錯誤.D選項,如,但,所以D選項錯誤.故選:A7、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.8、B【解析】設(shè)點P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進而把問題轉(zhuǎn)化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設(shè)點P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當(dāng)D,P,M三點共線時,|PM|+|PD|取得最小值為故選:B9、D【解析】利用分步乘法計數(shù)原理進行計算.【詳解】每位同學(xué)均有四種選擇,故不同的報名方法有種.故選:D10、C【解析】設(shè)點,其中,,根據(jù)拋物線的定義求得點的坐標(biāo),即可求得直線的斜率,即可得解.【詳解】設(shè)點,其中,,則,可得,則,所以點,故,因此,直線的傾斜角為.故選:C.11、C【解析】求出基本事件總數(shù)與正、副隊長不在同一組的基本事件個數(shù),即可求出答案.【詳解】基本事件總數(shù)為正、副隊長不在同一組的基本事件個數(shù)為故正、副隊長不在同一組的概率為.故選:C.12、D【解析】由空間向量運算法則得,利用向量的線性運算求出結(jié)果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##.【解析】由遞推關(guān)系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.14、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時,在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.15、【解析】根據(jù)圓錐曲線焦點在軸上且離心率小于1,確定a,b求解即可.【詳解】因為圓錐曲線的焦點在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:16、【解析】可知B對的邊最大,再用正弦定理計算即可.【詳解】利用正弦定理可知,B對的邊最大,因為,,所以,.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由橢圓離心率的性質(zhì)及一元二次方程的根可得,再由橢圓參數(shù)關(guān)系、已知三角形面積求橢圓參數(shù),即可得橢圓方程.(2)設(shè)直線,聯(lián)立橢圓方程并結(jié)合韋達(dá)定理求,進而可得,再根據(jù)求參數(shù)t,可得,結(jié)合橢圓的對稱性求,即可求結(jié)果.【小問1詳解】由的根為,所以橢圓的離心率,依題意,,解得,即橢圓的方程為;【小問2詳解】設(shè)直線,聯(lián)立,消去得,由韋達(dá)定理得:,所以,所以,所以橢圓的內(nèi)接平行四邊形面積.所以,解得或(舍去),所以,根據(jù)橢圓的對稱性知:,故平行四邊形的四個頂點的縱坐標(biāo)的乘積為.18、(1);(2)證明見解析.【解析】(1)設(shè)橢圓的方程為代入點的坐標(biāo)求出橢圓的方程,再利用點差法求解;(2)由題得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得韋達(dá)定理,根據(jù)和韋達(dá)定理得到,即得證.【小問1詳解】解:由題設(shè)橢圓的方程為因為橢圓經(jīng)過點,所以所以橢圓的方程為.設(shè),所以,所以,由題得,所以,所以,所以,所以直線的斜率為.【小問2詳解】解:由題得當(dāng)直線的斜率不存在時,不符合題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立方程組y=kx+nx24所以,解得①,設(shè),,,,則②,因為,則,,,又,,所以③,由②③可得(舍或滿足條件①,此時直線的方程為,故直線過定點19、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學(xué)中隨機抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計算公式即可求解.【小問1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設(shè)甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學(xué)共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學(xué)中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為20、(1);(2)①證明見解析,;②.【解析】(1)根據(jù)橢圓的定義以及角平分線的性質(zhì)可得,,結(jié)合點在橢圓上,以及即可求出的值,進而可得橢圓的方程.(2)①設(shè),,聯(lián)立直線與橢圓方程,求得,,利用斜率之和等于得出關(guān)于的方程,解得即可得所過的定點,②由弦長公式求出,點到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如圖,由題意可知,由橢圓定義知,則,連接,所以,所以又在橢圓上則,解得:,,所以橢圓的方程為:;(2)①證明:設(shè),,聯(lián)立,整理可得:,所以,可得,,,設(shè)直線,,的斜率為,,,因為直線,,的斜率之和為0,所以,即所以,由,所以,所以直線恒過定點;②由①可得:,原點到直線的距離,所以,因為,當(dāng)且僅當(dāng)時,即,即時取等號,所以,即面積的最大值為1【點睛】解決圓錐曲線中的范圍或最值問題時,若題目的條件和結(jié)論能體現(xiàn)出明確的函數(shù)關(guān)系,則可先建立目標(biāo)函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下幾個方面考慮:21、(1)(2)【解析】(1)由拋物線焦點可得c,再根據(jù)離心率可得a,即得b;(2)先設(shè)直線方程x=ty+m,根據(jù)向量數(shù)量積表示,將直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理代入化簡可得為定值的條件,解出m;根據(jù)點到直線距離得三角形的高,利用弦公式可得底,根據(jù)面積公式可得關(guān)于t的函數(shù),最后根據(jù)基本不等式求最值【詳解】試題解析:解:(1)設(shè)F1(﹣c,0),∵拋物線y2=﹣4x的焦點坐標(biāo)為(﹣1,0),且橢圓E的左焦點F與拋物線y2=﹣4x的焦點重合,∴c=1,又橢圓E的離心率為,得a=,于是有b2=a2﹣c2=1.故橢圓Γ的標(biāo)準(zhǔn)方程為:(2)設(shè)A(x1,y1),B(x2,y2),直線l的方程為:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度城市地下空間沉降監(jiān)測與開發(fā)合同7篇
- 2025年度棉花產(chǎn)業(yè)環(huán)保治理與污染防控合同4篇
- 2025年沙地生態(tài)保護與可持續(xù)發(fā)展承包合同3篇
- 2025年度戶外廣告牌使用權(quán)及維護合同4篇
- 二零二五版杭州二手房買賣合同產(chǎn)權(quán)變更與登記服務(wù)協(xié)議3篇
- 2025年度光伏發(fā)電項目個人工勞務(wù)分包合同2篇
- 2025年度苗木種植保險合同匯編3篇
- 二零二五年度廚房設(shè)備安裝與智能化節(jié)能改造合同4篇
- 二零二五年度地產(chǎn)樣板間軟裝設(shè)計定制合同3篇
- 2025年拋光技術(shù)成果轉(zhuǎn)化與應(yīng)用合同4篇
- 墓地銷售計劃及方案設(shè)計書
- 從偏差行為到卓越一生3.0版
- 優(yōu)佳學(xué)案七年級上冊歷史
- 鋁箔行業(yè)海外分析
- 紀(jì)委辦案安全培訓(xùn)課件
- 超市連鎖行業(yè)招商策劃
- 醫(yī)藥高等數(shù)學(xué)智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項目 投標(biāo)方案(技術(shù)標(biāo))
- 【公司利潤質(zhì)量研究國內(nèi)外文獻綜述3400字】
- 工行全國地區(qū)碼
- 新疆2022年中考物理試卷及答案
評論
0/150
提交評論