版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省菏澤市菏澤一中2025屆高二上數(shù)學(xué)期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓的短軸長為()A.8 B.2C.4 D.2.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.63.函數(shù)的圖像大致是()A. B.C. D.4.2021年6月17日9時(shí)22分,搭載神舟十二號載人飛船的長征二號F遙十二運(yùn)載火箭,在酒泉衛(wèi)星發(fā)射中心點(diǎn)火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個(gè)月,開展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號飛船的運(yùn)行軌道是以地心為焦點(diǎn)的橢圓,設(shè)地球半徑為R,其近地點(diǎn)與地面的距離大約是,遠(yuǎn)地點(diǎn)與地面的距離大約是,則該運(yùn)行軌道(橢圓)的離心率大約是()A. B.C. D.5.2020年12月4日,嫦娥五號探測器在月球表面第一次動(dòng)態(tài)展示國旗.1949年公布的《國旗制法說明》中就五星的位置規(guī)定:大五角星有一個(gè)角尖正向上方,四顆小五角星均各有一個(gè)角尖正對大五角星的中心點(diǎn).有人發(fā)現(xiàn),第三顆小星的姿態(tài)與大星相近.為便于研究,如圖,以大星的中心點(diǎn)為原點(diǎn),建立直角坐標(biāo)系,,,,分別是大星中心點(diǎn)與四顆小星中心點(diǎn)的聯(lián)結(jié)線,,則第三顆小星的一條邊AB所在直線的傾斜角約為()A. B.C. D.6.直線的傾斜角為()A.0 B.C. D.7.已知直線和互相垂直,則實(shí)數(shù)的值為()A. B.C.或 D.8.已知的二項(xiàng)展開式的各項(xiàng)系數(shù)和為32,則二項(xiàng)展開式中的系數(shù)為A5 B.10C.20 D.409.如圖,點(diǎn)A的坐標(biāo)為,點(diǎn)C的坐標(biāo)為,函數(shù),若在矩形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率等于()A. B.C. D.10.我們知道,償還銀行貸款時(shí),“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個(gè)月還一次款,20年還清,貸款月利率為,設(shè)張華第個(gè)月的還款金額為元,則()A.2192 B.C. D.11.在平面直角坐標(biāo)系中,已知點(diǎn),,,,直線AP,BP相交于點(diǎn)P,且它們斜率之積是.當(dāng)時(shí),的最小值為()A. B.C. D.12.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二進(jìn)制數(shù)轉(zhuǎn)化成十進(jìn)制數(shù)為______.14.已知圓:,:.則這兩圓的連心線方程為_________(答案寫成一般式方程)15.如圖,把正方形紙片沿對角線折成直二面角,則折紙后異面直線,所成的角為___________.16.已知等差數(shù)列滿足,,,則公差______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點(diǎn)為線段的中點(diǎn).(1)證明:平面;(2)求直線與平面所成角的正弦值.18.(12分)在棱長為4的正方體中,點(diǎn)分別在線段上,點(diǎn)在線段延長線上,,,連接交線段于點(diǎn).(1)求證平面;(2)求異面直線所成角的余弦值.19.(12分)如圖1,在邊長為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點(diǎn),沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.20.(12分)在正方體中,E,F(xiàn)分別是,的中點(diǎn)(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值21.(12分)如圖,在平面直角坐標(biāo)系上,已知圓的直徑,定直線到圓心的距離為,且直線垂直于直線,點(diǎn)是圓上異于、的任意一點(diǎn),直線、分別交與、兩點(diǎn)(1)求過點(diǎn)且與圓相切的直線方程;(2)若,求以為直徑的圓方程;(3)當(dāng)點(diǎn)變化時(shí),以為直徑的圓是否過圓內(nèi)的一定點(diǎn),若過定點(diǎn),請求出定點(diǎn);若不過定點(diǎn),請說明理由22.(10分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點(diǎn)分別為A,B(1)求橢圓的方程;(2)已知過點(diǎn)的直線交橢圓于M、N兩個(gè)不同的點(diǎn),直線AM,AN分別交軸于點(diǎn)S、T,記,(為坐標(biāo)原點(diǎn)),當(dāng)直線的傾斜角為銳角時(shí),求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進(jìn)而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.2、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時(shí),3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B3、B【解析】由導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及指數(shù)的增長趨勢即可判斷.【詳解】當(dāng)時(shí),,∴在上單調(diào)遞增,當(dāng)時(shí),,∴在上單調(diào)遞減,排除A、D;又由指數(shù)函數(shù)增長趨勢,排除C.故選:B4、A【解析】以運(yùn)行軌道長軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運(yùn)行軌道長軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A5、C【解析】由五角星的內(nèi)角為,可知,又平分第三顆小星的一個(gè)角,過作軸平行線,則,即可求出直線的傾斜角.【詳解】都為五角星的中心點(diǎn),平分第三顆小星的一個(gè)角,又五角星的內(nèi)角為,可知,過作軸平行線,則,所以直線的傾斜角為,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查直線傾斜角,解題的關(guān)鍵是通過做輔助線找到直線的傾斜角,通過幾何關(guān)系求出傾斜角,考查學(xué)生的數(shù)形結(jié)合思想,屬于基礎(chǔ)題.6、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.7、B【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.8、B【解析】首先根據(jù)二項(xiàng)展開式的各項(xiàng)系數(shù)和,求得,再根據(jù)二項(xiàng)展開式的通項(xiàng)為,求得,再求二項(xiàng)展開式中的系數(shù).【詳解】因?yàn)槎?xiàng)展開式的各項(xiàng)系數(shù)和,所以,又二項(xiàng)展開式的通項(xiàng)為=,,所以二項(xiàng)展開式中的系數(shù)為.答案選擇B【點(diǎn)睛】本題考查二項(xiàng)式展開系數(shù)、通項(xiàng)等公式,屬于基礎(chǔ)題9、A【解析】分別由矩形面積公式與微積分幾何意義計(jì)算陰影部分和矩形部分的面積,最后由幾何概型概率計(jì)算公式計(jì)算即可.【詳解】由已知,矩形的面積為4,陰影部分的面積為,由幾何概型公式可得此點(diǎn)取自陰影部分的概率等于,故選:A10、D【解析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個(gè)月已還多少本金,由此可計(jì)算出個(gè)月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個(gè)月的還款金額為元,則,故選:D11、A【解析】設(shè)出點(diǎn)坐標(biāo),求得、所在直線的斜率,由斜率之積是列式整理即可得到點(diǎn)的軌跡方程,設(shè),根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設(shè)點(diǎn)坐標(biāo)為,則直線的斜率;直線的斜率由已知有,化簡得點(diǎn)的軌跡方程為又,所以點(diǎn)的軌跡方程為,即點(diǎn)的軌跡為以、為頂點(diǎn)的雙曲線的左支(除點(diǎn)),因?yàn)?,設(shè),由雙曲線的定義可知,所以,當(dāng)且僅當(dāng)、、三點(diǎn)共線時(shí)取得最小值,因?yàn)?,所以,所以,即的最小值為;故選:A12、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因?yàn)?,所?故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】根據(jù)二進(jìn)制數(shù)和十進(jìn)制數(shù)之間的轉(zhuǎn)換方法即可求解.【詳解】.故答案為:13.14、【解析】求出兩圓的圓心坐標(biāo),再利用兩點(diǎn)式求出直線方程,再化成一般式即可【詳解】解:圓,即,兩圓的圓心為:和,這兩圓的連心線方程為:,即故答案為:15、##30°【解析】過點(diǎn)E作CE∥AB,且使得CE=AB,則四邊形ABEC是平行四邊形,進(jìn)而(或其補(bǔ)角)是所求角,算出答案即可.【詳解】過點(diǎn)E作CE∥AB,且使得CE=AB,則四邊形ABEC是平行四邊形,設(shè)所求角為,于是.設(shè)原正方形ABCD邊長為2,取AC的中點(diǎn)O,連接DO,BO,則且,而平面平面,且交于AC,所以平面ABEC,則.易得,,,而則于是,,.在中,,取DE的中點(diǎn)F,則,所以,即,于是.故答案為:.16、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關(guān)的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點(diǎn),連接,,證明兩兩垂直,如圖建系,求出的坐標(biāo)以及平面的一個(gè)法向量,證明結(jié)合面,即可求證;(2)求出的坐標(biāo)以及平面的法向量,根據(jù)空間向量夾角公式計(jì)算即可求解.【小問1詳解】如圖:取的中點(diǎn),連接,,因?yàn)槭沁呴L為等邊三角形,是以為斜邊的等腰直角三角形,可得,,因?yàn)槊婷?,面面,,面,所以平面,因?yàn)槊?,所以,可得兩兩垂直,分別以所在的直線為軸建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面的一個(gè)法向量,由,可得,令,則,所以,因?yàn)?,所以,因?yàn)槊?,所以平?【小問2詳解】,,,設(shè)平面的一個(gè)法向量,由,令,,,所以,設(shè)直線與平面所成角為,則.所以直線與平面所成角的正弦值為.18、(1)證明見解析(2)【解析】(1)由線面平行的判定定理證明;(2)建立空間直角坐標(biāo)系,用空間向量法求異面直線所成的角【小問1詳解】證明:且,由三角形相似可得,,,又,,又平面,平面平面;【小問2詳解】解:以為坐標(biāo)原點(diǎn),分別以為軸建立空間坐標(biāo)系,如圖.則設(shè)異面直線所成角為,則19、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點(diǎn)M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標(biāo)系,借助空間向量推理、計(jì)算作答.【小問1詳解】在中,因?yàn)镋,F(xiàn)分別是AC,BC的中點(diǎn),所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點(diǎn)M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點(diǎn)N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過點(diǎn)N作,則兩兩垂直,以點(diǎn)N為原點(diǎn),射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的法向量,則,令,得,設(shè)平面的法向量,則,令,得,顯然有,即,所以平面與平面的夾角為.【點(diǎn)睛】方法點(diǎn)睛:利用向量法求二面角:(1)找法向量,分別求出兩個(gè)半平面所在平面的法向量,然后求得法向量的夾角,結(jié)合圖形得到二面角的大小;(2)找與交線垂直的直線的方向向量,分別在二面角的兩個(gè)半平面內(nèi)找到與交線垂直且以垂足為起點(diǎn)的直線的方向向量,則這兩個(gè)向量的夾角就是二面角的平面角20、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點(diǎn),G是中點(diǎn),∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,取;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴21、(1)或(2)(3)過定點(diǎn),定點(diǎn)坐標(biāo)為【解析】(1)對所求直線的斜率是否存在進(jìn)行分類討論,在所求直線斜率不存在時(shí),直接驗(yàn)證直線與圓相切;在所求直線斜率存在時(shí),設(shè)所求直線方程為,利用點(diǎn)到直線的距離公式可得出關(guān)于的等式,求出的值,綜合可得出所求直線的方程;(2)分點(diǎn)在軸上方、點(diǎn)在軸下方兩種情況討論,求出點(diǎn)、的坐標(biāo),可得出所求圓的圓心坐標(biāo)和半徑,即可得出所求圓的方程;(3)設(shè)直線的方程為,其中,求出點(diǎn)、的坐標(biāo),可求得以線段為直徑的圓的方程,并化簡圓的方程,可求得定點(diǎn)的坐標(biāo).【小問1詳解】解:易知圓的方程為,圓心為原點(diǎn),半徑為,若所求直線的斜率不存在,則所求直線的方程為,此時(shí)直線與圓相切,合乎題意,若所求直線的斜率存在,設(shè)所求直線的方程為,即,由已知可得,解得,此時(shí)所求直線的方程為.綜上所述,過點(diǎn)且與圓相切的直線方程為或.【小問2詳解】解:易知直線的方程為,、,若點(diǎn)在軸上方,則直線的方程為,在直線的方程中,令,可得,即點(diǎn),直線的方程為,在直線的方程中,令,可得,即點(diǎn),線段的中點(diǎn)為,且,此時(shí),所求圓的方程為;若點(diǎn)在軸下方,同理可求得所求圓的方程為.綜上所述,以為直徑的圓方程為.【小問3詳解】解:不妨設(shè)直線的方程為,其中,在直線的方程中,令,可得,即點(diǎn),因?yàn)?,則直線的方程為,在直線的方程中,令,可得,即點(diǎn),線段中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度速記服務(wù)與保密協(xié)議–聚法通專業(yè)法庭記錄3篇
- 2025年版出租車公司股權(quán)轉(zhuǎn)讓及運(yùn)營權(quán)移交協(xié)議模板3篇
- 個(gè)人與個(gè)人2024年度租賃合同9篇
- 個(gè)性化咨詢服務(wù)2024年協(xié)議范本版A版
- 2025年航空航天零部件制造入股分紅合同4篇
- 2025年度智慧停車設(shè)施物業(yè)管理合同4篇
- 2025年度文化藝術(shù)品代付款協(xié)議書4篇
- 二零二五版勞動(dòng)合同法修訂后企業(yè)應(yīng)對策略合同3篇
- 2025版?zhèn)}儲(chǔ)消防安全檢測與維護(hù)保養(yǎng)工程合同3篇
- 2025年高校食堂特色餐飲文化推廣承包服務(wù)協(xié)議2篇
- 2025年春新滬科版物理八年級下冊全冊教學(xué)課件
- 2025屆高考語文復(fù)習(xí):散文的結(jié)構(gòu)與行文思路 課件
- 電網(wǎng)調(diào)度基本知識(shí)課件
- 拉薩市2025屆高三第一次聯(lián)考(一模)語文試卷(含答案解析)
- 《保密法》培訓(xùn)課件
- 回收二手機(jī)免責(zé)協(xié)議書模板
- (正式版)JC∕T 60023-2024 石膏條板應(yīng)用技術(shù)規(guī)程
- (權(quán)變)領(lǐng)導(dǎo)行為理論
- 2024屆上海市浦東新區(qū)高三二模英語卷
- 2024年智慧工地相關(guān)知識(shí)考試試題及答案
- GB/T 8005.2-2011鋁及鋁合金術(shù)語第2部分:化學(xué)分析
評論
0/150
提交評論