山東省九校2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第1頁
山東省九校2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第2頁
山東省九校2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第3頁
山東省九校2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第4頁
山東省九校2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省九校2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:,;命題:在中,若,則,則下列命題為真命題的是()A. B.C. D.2.直線在y軸上的截距是A. B.C. D.3.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.454.下列說法或運算正確的是()A.B.用反證法證明“一個三角形至少有兩個銳角”時需設(shè)“一個三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切5.年月日,很多人的微信圈都在轉(zhuǎn)發(fā)這樣一條微信:“,所遇皆為對,所做皆稱心””.形如“”的數(shù)字叫“回文數(shù)”,即從左到右讀和從右到左讀都一樣的正整數(shù),則位的回文數(shù)共有()A. B.C. D.6.已知{an}是以10為首項,-3為公差的等差數(shù)列,則當{an}的前n項和Sn,取得最大值時,n=()A.3 B.4C.5 D.67.設(shè)是等差數(shù)列的前n項和,若,,則()A.26 B.-7C.-10 D.-138.已知、,則直線的傾斜角為()A. B.C. D.9.若函數(shù)在上為單調(diào)增函數(shù),則m的取值范圍()A. B.C. D.10.三個實數(shù)構(gòu)成一個等比數(shù)列,則圓錐曲線的離心率為()A. B.C.或 D.或11.已知直線和互相垂直,則實數(shù)的值為()A. B.C.或 D.12.設(shè)圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對于下面這個等式我們除了可以用等比數(shù)列的求和公式獲得,還可以用數(shù)學(xué)歸納法對其進行證明“”,那么在應(yīng)用數(shù)學(xué)歸納法證明時,當驗證是否成立時,左邊的式子應(yīng)該是_______14.某人有樓房一棟,室內(nèi)面積共計,擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費150元;裝修大房間每間需要3萬元,裝修小房間每間需要2萬元.如果他只能籌款25萬元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費的最大值為___________元.15.若正實數(shù)滿足則的最小值為________________________16.定義在上的函數(shù)滿足:有成立且,則不等式的解集為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設(shè)直線與拋物線相交于,兩點,為坐標原點,證明:.18.(12分)如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,D是AC的中點.(1)證明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.19.(12分)已知等差數(shù)列的公差為2,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前項和.20.(12分)已知雙曲線的右焦點與拋物線的焦點相同,且過點.(1)求雙曲線漸近線方程;(2)求拋物線的標準方程.21.(12分)已知圓,點(1)若點在圓外部,求實數(shù)的取值范圍;(2)當時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率22.(10分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分別求得的真假性,從而確定正確答案.【詳解】對于,由于,所以為假命題,為真命題.對于,在三角形中,,由正弦定理得,所以為真命題,為假命題.所以為真命題,、、為假命題.故選:C2、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.3、C【解析】設(shè)雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設(shè)點是雙曲線與截面的一個交點,設(shè)雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:4、D【解析】對于A:可以解決;對于B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點的.【詳解】A:,故錯誤;B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”,所以用反證法時應(yīng)假設(shè)只有一個銳角和沒有銳角兩種情況,故錯誤;C:的否定形式是,故錯誤;D:直線是過定點(-1,0),而圓,圓心為(2,0),半徑為4,定點(-1,0)到圓心的距離為2-(-1)=3<4,故定點在圓內(nèi),故正確;故選:D.5、C【解析】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,確定這四位數(shù)的選數(shù)的種數(shù),利用分步乘法計數(shù)原理可得結(jié)果.【詳解】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,首位數(shù)不能放零,首位數(shù)共有種選擇,第二位、第三位、第四位數(shù)均有種選擇,因此,位的回文數(shù)共有個.故選:C.6、B【解析】由題可得當時,,當時,,即得.【詳解】∵{an}是以10為首項,-3為公差的等差數(shù)列,∴,故當時,,當時,,故時,取得最大值故選:B.7、C【解析】直接利用等差數(shù)列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.8、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.9、B【解析】用函數(shù)單調(diào)性確定參數(shù),使用參數(shù)分離法即可.【詳解】,在上是增函數(shù),即恒成立,;設(shè),;∴時,是增函數(shù);時,是減函數(shù);故時,,∴;故選:B.10、D【解析】根據(jù)三個實數(shù)構(gòu)成一個等比數(shù)列,解得,然后分,討論求解.【詳解】因為三個實數(shù)構(gòu)成一個等比數(shù)列,所以,解得,當時,方程表示焦點在x軸上的橢圓,所以,所以,當時,方程表示焦點在y軸上的雙曲線,所以,所以,故選:D11、B【解析】由兩直線垂直可得出關(guān)于實數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.12、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知條件,結(jié)合數(shù)學(xué)歸納法的定義,即可求解.【詳解】當,,故此時式子左邊=.故答案為:.14、3600【解析】先設(shè)分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè),再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的整數(shù)點時,從而得到值即可【詳解】解:設(shè)裝修大房間間,小房間間,收益為萬元,則,目標函數(shù),由,解得畫出可行域,得到目標函數(shù)過點時,有最大值,故應(yīng)隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360015、【解析】利用基本不等式即可求解.【詳解】,,又,,,當且僅當即,等號成立,.故答案為:【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.16、【解析】由,判斷出函數(shù)的單調(diào)性,利用單調(diào)性解即可【詳解】設(shè),又有成立,函數(shù),即是上的增函數(shù),,即,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關(guān)系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設(shè),.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關(guān)系;拋物線的標準方程18、(1)證明見解析(2)【解析】(1),連接,證明,再根據(jù)線面平行的判定定理即可得證;(2)說明平面,取的中點F,連接,以D為原點,分別以的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系,利用向量法即可得出答案.【小問1詳解】證明:記,連接,由直棱柱的性質(zhì)可知四邊形是矩形,則E為的中點.因為D是的中點,所以,又平面平面,所以平面;【小問2詳解】因為底面是等邊三角形,D是的中點,所以,由直棱柱的性質(zhì)可知平面平面,平面平面,面,所以平面,取的中點F,連接,則兩兩垂直,故以D為原點,分別以的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系,設(shè),則,從而,設(shè)平面的法向量為,則,令x=2,得,同理平面的一個法向量為,則cosm由圖可知二面角的平面角為銳角,所以二面角B1-AC-C1的余弦值為.19、(1)(2)【解析】(1)由,,成等比數(shù)列和,可得,解方程求出,從而可求出的通項公式,(2)由(1)可得,然后利用裂項相消法可求出【小問1詳解】因為等差數(shù)列的公差為2,所以又因為成等比數(shù)列,所以,解得,所以.【小問2詳解】由(1)得,所以.20、(1)(2)【解析】(1)將已知點代入雙曲線方程,然后可得;(2)由雙曲線右焦點與拋物線的焦點相同可解.【小問1詳解】因為雙曲線過點,所以所以,得又因為,所以所以雙曲線的漸近線方程【小問2詳解】由(1)得所以所以雙曲線的右焦點是所以拋物線的焦點是所以,所以所以拋物線的標準方程21、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標準方程,由點與圓的位置關(guān)系可得,求解不等式組得答案;(2)當時,圓的方程為,求出圓心與半徑,設(shè),則,分析可得面積的最大值,結(jié)合直線與圓的位置關(guān)系可得圓心到直線的距離,設(shè)直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當時,圓的方程為,圓心為,半徑,設(shè),則,當時,面積取得最大值,且其最大值為2,此時為等腰直角三角形,圓心到直線的距離,設(shè)直線的方程為,即,則有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論