版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省豫南豫北名校2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,正方體的棱長為2,以其所有面的中心為頂點(diǎn)的多面體的表面積為()A. B.C.8 D.122.已知空間直角坐標(biāo)系中的點(diǎn),,,則點(diǎn)P到直線AB的距離為()A. B.C. D.3.記Sn為等差數(shù)列{an}的前n項(xiàng)和,給出下列4個條件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一個條件不成立,則該條件為()A.① B.②C.③ D.④4.已知,,若,則()A.9 B.6C.5 D.35.等差數(shù)列前項(xiàng)和,已知,,則的值是().A. B.C. D.6.若直線與直線垂直,則a的值為()A.2 B.1C. D.7.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則的最小值為()A. B.C. D.8.將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,則()A. B.C. D.9.已知是等差數(shù)列的前項(xiàng)和,,,則的最小值為()A. B.C. D.10.在等差數(shù)列中,若的值是A.15 B.16C.17 D.1811.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.12.設(shè)為數(shù)列的前n項(xiàng)和,且,則=()A.26 B.19C.11 D.9二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四面體中,BA,BC,BD兩兩垂直,,,則二面角的大小為______14.已知等差數(shù)列公差不為0,且,,等比數(shù)列,則_________.15.生活中有這樣的經(jīng)驗(yàn):三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機(jī).這個經(jīng)驗(yàn)用我們所學(xué)的數(shù)學(xué)公理可以表述為___________.16.已知雙曲線的焦點(diǎn),過F且斜率為1的直線與雙曲線有且只有一個交點(diǎn),則雙曲線的方程為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題18.(12分)已知橢圓C經(jīng)過,兩點(diǎn)(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線l與C交于P,Q兩點(diǎn),M是PQ的中點(diǎn),O是坐標(biāo)原點(diǎn),,求證:的邊PQ上的高為定值19.(12分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點(diǎn),求證PC⊥平面AEF20.(12分)已知拋物線上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4.(1)求拋物線E的方程;(2)點(diǎn)A、B為拋物線E上異于原點(diǎn)O的兩不同的點(diǎn),且滿足.若直線AB與橢圓恒有公共點(diǎn),求m的取值范圍.21.(12分)等差數(shù)列的公差d不為0,滿足成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列與通項(xiàng)公式:(2)若,求數(shù)列的前n項(xiàng)和.22.(10分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學(xué)生進(jìn)行“擲鉛球”的項(xiàng)目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績在9米到11米之間(1)求實(shí)數(shù)的值及參加“擲鉛球”項(xiàng)目測試的人數(shù);(2)若從此次測試成績最好和最差的兩組中隨機(jī)抽取2名學(xué)生再進(jìn)行其它項(xiàng)目的測試,求所抽取的2名學(xué)生自不同組的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】首先確定幾何體的空間結(jié)構(gòu)特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B2、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點(diǎn)到直線的距離為.故選:D3、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式及求和公式的基本量計算,對比即可得出結(jié)果.【詳解】設(shè)等差數(shù)列{an}的公差為,,,,即,即.當(dāng),時,①③④均成立,②不成立.故選:B4、D【解析】根據(jù)空間向量垂直的坐標(biāo)表示即可求解.【詳解】.故選:D.5、C【解析】由題意,設(shè)等差數(shù)列的公差為,則,故,故,故選6、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A7、B【解析】設(shè)等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,因?yàn)椋瑒t,所以,,則,當(dāng)且僅當(dāng)時,等號成立.故選:B.8、A【解析】先化簡函數(shù)表達(dá)式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個單位長度后,得到的圖象.故選:A9、C【解析】根據(jù),可得,再根據(jù),得,從而可得出答案.【詳解】解:因?yàn)?,所以,又,所以,所以的最小值?故選:C.10、C【解析】由已知直接利用等差數(shù)列的性質(zhì)求解【詳解】在等差數(shù)列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故選C【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查等差數(shù)列的性質(zhì),是基礎(chǔ)題11、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C12、D【解析】先求得,然后求得.【詳解】依題意,當(dāng)時,,當(dāng)時,,,所以,所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點(diǎn)為,連接,由面面角的定義得出二面角的平面角為,再結(jié)合等腰直角三角形的性質(zhì)得出二面角的大小.【詳解】取的中點(diǎn)為,連接,因?yàn)?,所以二面角的平面角為,因?yàn)?,,所以為等腰直角三角形,即二面角的大小?故答案為:14、【解析】設(shè)等差數(shù)列的公差為,由,,等比數(shù)列,可得,則的值可求【詳解】解:設(shè)等差數(shù)列的公差為,,,等比數(shù)列,,則,得,故答案為:15、不在同一直線上的三點(diǎn)確定一個平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個點(diǎn)不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點(diǎn)確定一個平面.故答案為:不在同一直線上的三點(diǎn)確定一個平面.16、【解析】根據(jù)直線與雙曲線只有一個交點(diǎn)可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個交點(diǎn),且焦點(diǎn),直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據(jù)上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據(jù)上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據(jù)對立事件概率計算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個選擇題因此基本事件的總數(shù)為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點(diǎn)睛】本小題主要考查互斥事件概率計算,考查對立事件,屬于基礎(chǔ)題.18、(1)(2)證明見解析【解析】(1)設(shè)出橢圓方程,根據(jù)的坐標(biāo)求得橢圓方程.(2)對直線的斜率分成存在和不存在兩種情況進(jìn)行分類討論,求得的邊PQ上的高來證得結(jié)論成立.【小問1詳解】設(shè)橢圓方程為,將坐標(biāo)代入得,所以橢圓方程為.小問2詳解】當(dāng)直線的斜率不存在時,關(guān)于軸對稱,由于,所以,即,直線與橢圓有兩個交點(diǎn),符合題意.所以的邊PQ上的高為.當(dāng)直線的斜率不存在時,設(shè)直線的方程為,由消去并化簡得①,設(shè),則,.由于M是PQ的中點(diǎn)且,所以,所以,即,,,.此時①的.原點(diǎn)到直線的距離為.綜上所述,的邊PQ上的高為定值19、(1)(2)見解析.【解析】(1)在中,,求得,由此能求出四棱錐的體積;(2)由平面,證得和,由此利用線面垂直的判定定理,即可證得平面.試題解析:(1)在中,.在中,.則.(2),為的中點(diǎn),.平面.平面.為中點(diǎn),為為中點(diǎn),,則.平面.考點(diǎn):四棱錐的體積公式;直線與平面垂直的判定與證明.20、(1)(2)【解析】(1)由焦半徑公式可得,求解即可得答案;(2)由題意,直線AB斜率不為0,設(shè),,聯(lián)立直線與拋物線的方程,由韋達(dá)定理及可得,從而可得直線AB恒過定點(diǎn),進(jìn)而可得定點(diǎn)在橢圓內(nèi)部或橢圓上即可求解.【小問1詳解】解:因?yàn)閽佄锞€上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4,所以,解得,所以拋物線E的方程為;【小問2詳解】解:由題意,直線AB斜率不為0,設(shè),,由,可得,所以,因?yàn)?,即,所以,所以,即,所以,所以直線,所以直線AB恒過定點(diǎn),因?yàn)橹本€AB與橢圓恒有公共點(diǎn),所以定點(diǎn)在橢圓內(nèi)部或橢圓上,即,所以.21、(1),(2)【解析】(1)根據(jù)等比中項(xiàng)的性質(zhì)及等差數(shù)列的通項(xiàng)公式得到方程求出公差,即可求出的通項(xiàng)公式,由,當(dāng)時,求出,當(dāng)時,兩式作差,即可求出;(2)由(1)可得,利用錯位相減法求和即可;【小問1詳解】解:由已知,又,所以故解得(舍去)或∴∵①故當(dāng)時,可知,∴,當(dāng)時,可知②①②得∴又也滿足,故當(dāng)時,都有;【小問2詳解】解:由(1)知,故③,∴④,由③④得整理得.22、(1)0.05,40;(2)【解析】(1)因?yàn)橛深l率分布直方圖可得共五組的頻率和為1所以可得一個關(guān)于的等式,即可求出的值.再根據(jù)已知有4名學(xué)生的成績在9米到11米之間,可以求出本次參加“擲鉛球”項(xiàng)目測試的人數(shù).本小題要根據(jù)所給的圖表及直方圖作答,頻率的計算易漏乘以組距.(2)因?yàn)槿舸舜螠y試成績最好的共有4名同學(xué).成績最差的共有2名同學(xué).所以從6名同學(xué)中抽取2名同學(xué)共有15中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度數(shù)碼產(chǎn)品銷售承包經(jīng)營合同樣本3篇
- 二零二五年度房地產(chǎn)項(xiàng)目融資合同還款期付款臺賬3篇
- 二零二五年度光纜鋪設(shè)及維護(hù)合同2篇
- 2025年度汽車銷售代理固定總價合同3篇
- 二零二五年度房產(chǎn)贈與離婚協(xié)議雙項(xiàng)保障合同3篇
- 二零二五年度建議書審核、采納與實(shí)施效果評估服務(wù)協(xié)議3篇
- 美國課程設(shè)計先驅(qū)是
- 海南衛(wèi)生健康職業(yè)學(xué)院《醫(yī)用檢驗(yàn)儀器與體外診斷試劑》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版頂名支付方式下的商業(yè)房產(chǎn)買賣合同3篇
- 二零二五年度城市綠化與生態(tài)保護(hù)合作協(xié)議2篇
- 血細(xì)胞分析報告規(guī)范化指南2020
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之7:“5領(lǐng)導(dǎo)作用-5.1領(lǐng)導(dǎo)作用和承諾”(雷澤佳編制-2025B0)
- 2024年快速消費(fèi)品物流配送合同6篇
- 廣東省茂名市2024屆高三上學(xué)期第一次綜合測試(一模)歷史 含解析
- 神經(jīng)重癥氣管切開患者氣道功能康復(fù)與管理學(xué)習(xí)與臨床應(yīng)用
- 第5章 一元一次方程大單元整體設(shè)計 北師大版(2024)數(shù)學(xué)七年級上冊教學(xué)課件
- 人教版高一地理必修一期末試卷
- 遼寧省錦州市(2024年-2025年小學(xué)六年級語文)部編版期末考試(上學(xué)期)試卷及答案
- GB/T 29498-2024木門窗通用技術(shù)要求
- 《職業(yè)院校與本科高校對口貫通分段培養(yǎng)協(xié)議書》
- 機(jī)電傳動單向數(shù)控平臺-礦大-機(jī)械電子-有圖
評論
0/150
提交評論