版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省大理市2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了了解1200名學(xué)生對學(xué)校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.122.函數(shù)的圖像大致是()A B.C. D.3.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.4.已知焦點在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.5.青少年視力被社會普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.6.已知直線與直線垂直,則()A. B.C. D.37.已知條件:,條件:表示一個橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則9.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.10.已知,,,則的大小關(guān)系是()A. B.C. D.11.已知數(shù)列滿足,,在()A.25 B.30C.32 D.6412.將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ值為()A.-3或7 B.-2或8C0或10 D.1或11二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點P()處的切線方程是,則_____14.如圖,某海輪以的速度航行,若海輪在點測得海面上油井在南偏東,向北航行后到達點,測得油井在南偏東,海輪改為沿北偏東的航向再行駛到達點,則,間的距離是________15.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點,,,,若,則_________16.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點對稱;②曲線C關(guān)于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;⑤曲線C與曲線D:|x|+|y|=2有4個公共點,這4點構(gòu)成正方形其中正確結(jié)論的個數(shù)是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在水平桌面上放一只內(nèi)壁光滑的玻璃水杯,已知水杯內(nèi)壁為拋物面型(拋物面指拋物線繞其對稱軸旋轉(zhuǎn)所得到的面),拋物面的軸截面是如圖所示的拋物線.現(xiàn)有一些長短不一、質(zhì)地均勻的細直金屬棒,其長度均不小于拋物線通徑的長度(通徑是過拋物線焦點,且與拋物線的對稱軸垂直的直線被拋物線截得的弦),若將這些細直金屬棒,隨意丟入該水杯中,實驗發(fā)現(xiàn):當細棒重心最低時,達到靜止狀態(tài),此時細棒交匯于一點.(1)請結(jié)合你學(xué)過的數(shù)學(xué)知識,猜想細棒交匯點的位置;(2)以玻璃水杯內(nèi)壁軸截面的拋物線頂點為原點,建立如圖所示直角坐標系.設(shè)玻璃水杯內(nèi)壁軸截面的拋物線方程為,將細直金屬棒視為拋物線的弦,且弦長度為,以細直金屬棒的中點為其重心,請從數(shù)學(xué)角度解釋上述實驗現(xiàn)象.18.(12分)設(shè):函數(shù)的定義域為;:不等式對任意的恒成立(1)如果是真命題,求實數(shù)的取值范圍;(2)如果“”為真命題,“”為假命題,求實數(shù)的取值范圍19.(12分)已知雙曲線,直線l與交于P、Q兩點(1)若點是雙曲線的一個焦點,求的漸近線方程;(2)若點P的坐標為,直線l的斜率等于1,且,求雙曲線的離心率20.(12分)已知數(shù)列的前項和為,已知,且當,時,(1)證明數(shù)列是等比數(shù)列;(2)設(shè),求數(shù)列的前項和21.(12分)已知數(shù)列的前n項和為,且(1)求數(shù)列的通項公式;(2)若,數(shù)列的前n項和為,求的值22.(10分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,求的最小值及此時的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.2、B【解析】由函數(shù)有兩個零點排除選項A,C;再借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導(dǎo)得,當或時,,當時,,于是得在和上都單調(diào)遞增,在上單調(diào)遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B3、A【解析】根據(jù)二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.4、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D5、B【解析】依題意該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B6、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.7、B【解析】根據(jù)曲線方程,結(jié)合充分、必要性的定義判斷題設(shè)條件間的關(guān)系.【詳解】由,若,則表示一個圓,充分性不成立;而表示一個橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B8、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對于選項A:若,則與可能平行,可能相交,可能異面,故選項A錯誤;對于選項B:若,則,故選項B錯誤;對于選項C:當時不滿足,故選項C錯誤;綜上,可知選項D正確.故選:D.9、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.10、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:11、A【解析】根據(jù)題中條件,得出數(shù)列公差,進而可求出結(jié)果.【詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【點睛】本題主要考查等差數(shù)列的基本量運算,屬于基礎(chǔ)題型.12、A【解析】根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點到直線的距離公式列出關(guān)于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標準式方程得(x+1)2+(y﹣2)2=5,圓心坐標為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點:直線與圓的位置關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線方程,即可求解.【詳解】根據(jù)導(dǎo)數(shù)的幾何意義可知,,且,所以.故答案為:14、【解析】根據(jù)條件先由正弦定理求出的長,得出,求出的長,由勾股定理可得答案.【詳解】海輪向北航行后到達點,則由題意,在中,又則,由正弦定理可得:,即在中,,所以故答案為:15、【解析】建立空間直角坐標系,利用空間向量可以解決問題.【詳解】設(shè),如下圖所示,建立空間直角坐標系,,,,,,則所以又因為所以故答案為:16、4【解析】直接利用曲線的性質(zhì),對稱性的應(yīng)用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點為,故曲線C與曲線D有四個交點,這4點構(gòu)成正方形,故⑤正確故答案為:4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)拋物線的焦點或拋物面的焦點(2)答案見解析【解析】(1)結(jié)合通徑的特點可猜想得到結(jié)果;(2)將問題轉(zhuǎn)化為當時,只要過點,則中點到的距離最小,根據(jù),結(jié)合拋物線定義可得結(jié)論.【小問1詳解】根據(jù)通徑的特征,知通徑會經(jīng)過拋物線的焦點達到靜止狀態(tài),則可猜想細棒交匯點位置為:拋物線焦點或拋物面的焦點.【小問2詳解】解釋上述現(xiàn)象,即證:當(為拋物線通徑)時,只要過點,則中點到的距離最小;如圖所示,記點在拋物線準線上的射影分別是,,由拋物線定義知:,當過拋物線焦點時,點到準線距離取得最小值,最小值為的一半,此時點到軸距離最小.【點睛】關(guān)鍵點點睛:本題考查拋物線的實際應(yīng)用問題,解題關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為拋物線焦點弦的中點到軸距離最小問題的證明,通過拋物線的定義可證得結(jié)論.18、(1)(2)【解析】(1)由對數(shù)函數(shù)性質(zhì),轉(zhuǎn)化為對任意的恒成立,結(jié)合二次函數(shù)的性質(zhì),即可求解;(2)利用基本不等式,求得當命題是真命題,得到,結(jié)合“”為真命題,“”為假命題,分類討論,即可求解.【小問1詳解】解:因為是真命題,所以對任意的恒成立,當時,不等式,顯然在不能恒成立;當時,則滿足解得,故實數(shù)的取值范圍為【小問2詳解】解:因為,所以,當且僅當時,等號成立若是真命題,則;因為“”為真命題,“”為假命題,所以與一真一假當真假時,所以;當假真時,所以,綜上,實數(shù)的取值范圍為19、(1)(2)或【解析】(1)根據(jù)題意可得,又因為且,解得,可得雙曲線方程,進而可得的漸近線方程(2)設(shè)直線的方程為:,,,聯(lián)立直線與雙曲線方程,可得關(guān)于的一元二次方程,由韋達定理可得,,再由兩點之間距離公式得,解得,進而由可求出,即可求得離心率.【小問1詳解】∵點是雙曲線的一個焦點,∴,又∵且,解得,∴雙曲線方程為,∴的漸近線方程為:;小問2詳解】設(shè)直線的方程為,且,,聯(lián)立,可得,則,∴,即,∴,解得或,即由可得或,故雙曲線的離心率或.20、(1)證明見解析;(2).【解析】(1)消去,只保留數(shù)列的遞推關(guān)系,根據(jù)題干提示來證明,注意證明首項不是零;(2)利用裂項求和來解決.【小問1詳解】證明:由題意,當時,即,,整理,得,,,,數(shù)列是以2為首項,2為公比的等比數(shù)列【小問2詳解】解:由(1)知,,則,,,,,各項相加,可得,當n=1成立,故21、(1);(2).【解析】(1)根據(jù)給定的遞推公式結(jié)合“當時,”探求相鄰兩項的關(guān)系計算作答.(2)由(1)的結(jié)論求出,再利用裂項相消法求出,即可作答.【小問1詳解】依題意,,,則當時,,于是得:,即,而當時,,即有,因此,,,所以數(shù)列是以2為首項,2為公比的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 素描室內(nèi)寫生課程設(shè)計
- 相機掛件課程設(shè)計
- 英語語言學(xué)課程設(shè)計
- 航空專業(yè)票務(wù)課程設(shè)計
- (中職中專)貿(mào)法律與案例教學(xué)設(shè)計全書電子教案整本書教案1-6章全
- 電信課程設(shè)計論文
- 糖化鍋課程設(shè)計選型
- 給水廠課程設(shè)計總結(jié)心得
- 游戲觀察課程設(shè)計
- 聯(lián)考素描課程設(shè)計考什么
- 叉車維護維修合同
- 2024年財務(wù)部年度工作總結(jié)(7篇)
- 2024年度醫(yī)療美容服務(wù)合作合同3篇
- 水利工程勞務(wù)施工方案
- 山東省德州市2023-2024學(xué)年高二上學(xué)期期末考試政治試題 附答案
- 高中體育教學(xué)教案30篇
- 2025年低壓電工作業(yè)模擬考試題庫
- 七年級上冊語文常考必背重點知識梳理(pdf版)
- 銀行先進個人先進事跡材料
- 排洪渠擋墻、河道清淤及渣土外運施工方案
- 上海市近10年物理中考真題匯編專題05電路故障分析2
評論
0/150
提交評論