版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第89講古典概型與概率的基本性質(zhì)知識梳理知識點1、隨機事件的概率對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率,事件的概率用表示.知識點2、古典概型(1)定義一般地,若試驗具有以下特征:①有限性:樣本空間的樣本點只有有限個;②等可能性:每個樣本點發(fā)生的可能性相等.稱試驗E為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型.(2)古典概型的概率公式一般地,設(shè)試驗是古典概型,樣本空間包含個樣本點,事件包含其中的個樣本點,則定義事件的概率.知識點3、概率的基本性質(zhì)(1)對于任意事件都有:.(2)必然事件的概率為,即;不可能事概率為,即.(3)概率的加法公式:若事件與事件互斥,則.推廣:一般地,若事件,,…,彼此互斥,則事件發(fā)生(即,,…,中有一個發(fā)生)的概率等于這個事件分別發(fā)生的概率之和,即:.(4)對立事件的概率:若事件與事件互為對立事件,則,,且.(5)概率的單調(diào)性:若,則.(6)若,是一次隨機實驗中的兩個事件,則.【解題方法總結(jié)】1、解決古典概型的問題的關(guān)鍵是:分清基本事件個數(shù)與事件中所包含的基本事件數(shù).因此要注意清楚以下三個方面:(1)本試驗是否具有等可能性;(2)本試驗的基本事件有多少個;(3)事件是什么.2、解題實現(xiàn)步驟:(1)仔細閱讀題目,弄清題目的背景材料,加深理解題意;(2)判斷本試驗的結(jié)果是否為等可能事件,設(shè)出所求事件;(3)分別求出基本事件的個數(shù)與所求事件中所包含的基本事件個數(shù);(4)利用公式求出事件的概率.3、解題方法技巧:(1)利用對立事件、加法公式求古典概型的概率(2)利用分析法求解古典概型.①任一隨機事件的概率都等于構(gòu)成它的每一個基本事件概率的和.②求試驗的基本事件數(shù)及事件A包含的基本事件數(shù)的方法有列舉法、列表法和樹狀圖法.必考題型全歸納題型一:簡單的古典概型問題例1.(2024·高一課時練習)下列概率模型中,是古典概型的個數(shù)為(
)①從區(qū)間內(nèi)任取一個數(shù),求取到1的概率;②從1,2,3,…,10中任取一個數(shù),求取到1的概率;③在正方形ABCD內(nèi)畫一點P,求點P恰好為正方形中心的概率;④向上拋擲一枚不均勻的硬幣,求出現(xiàn)反面朝上的概率.A.1 B.2 C.3 D.4例2.(2024·全國·高一專題練習)下列關(guān)于古典概型的說法正確的是(
)①試驗中所有可能出現(xiàn)的樣本點只有有限個;②每個事件出現(xiàn)的可能性相等;③每個樣本點出現(xiàn)的可能性相等;④樣本點的總數(shù)為n,隨機事件A若包含k個樣本點,則.A.②④ B.②③④ C.①②④ D.①③④例3.(2024·全國·高三專題練習)下列有關(guān)古典概型的四種說法:①試驗中所有可能出現(xiàn)的樣本點只有有限個;②每個事件出現(xiàn)的可能性相等;③每個樣本點出現(xiàn)的可能性相等;④已知樣本點總數(shù)為,若隨機事件包含個樣本點,則事件發(fā)生的概率.其中所正確說法的序號是(
)A.①②④ B.①③ C.③④ D.①③④變式1.(2024·重慶沙坪壩·高三重慶八中??茧A段練習)一項試驗旨在研究臭氧效應(yīng),試驗方案如下:選6只小白鼠,隨機地將其中3只分配到試驗組且飼養(yǎng)在高濃度臭氧環(huán)境,另外3只分配到對照組且飼養(yǎng)在正常環(huán)境,一段時間后統(tǒng)計每只小白鼠體重的增加量(單位:).則指定的兩只小鼠分配到不同組的概率為(
)A. B. C. D.變式2.(2024·青海西寧·高三統(tǒng)考開學考試)乒乓球是中國的國球,擁有廣泛的群眾基礎(chǔ),老少皆宜,特別適合全民身體鍛煉.某小學體育課上,老師讓小李同學從7個乒乓球(其中3只黃色和4只白色)中隨機選取2個,則他選取的乒乓球恰為1黃1白的概率是(
)A. B. C. D.變式3.(2024·河北保定·統(tǒng)考二模)三位同學參加某項體育測試,每人要從跑、引體向上、跳遠、鉛球四個項目中選出兩個項目參加測試,則有且僅有兩人選擇的項目完全相同的概率是(
)A. B. C. D.變式4.(2024·湖北·高三校聯(lián)考階段練習)將2個不同的小球隨機放入甲、乙、丙3個盒子,則2個小球在同一個盒子的概率為(
)A. B. C. D.題型二:古典概型與向量的交匯問題例4.(2024·重慶·高三統(tǒng)考階段練習)已知正九邊形,從中任取兩個向量,則它們的數(shù)量積是正數(shù)的概率為(
)A. B. C. D.例5.(2024·全國·高三專題練習)已知,若向量,,則向量與所成的角為銳角的概率是(
)A. B. C. D.例6.(2024·甘肅武威·甘肅省武威第一中學??寄M預(yù)測)連擲兩次骰子分別得到點數(shù)m,n,則向量與向量的夾角的概率是(
)A. B. C. D.變式5.(2024·四川成都·四川省成都市玉林中學校考模擬預(yù)測)從集合中隨機抽取一個數(shù)a,從集合中隨機抽取一個數(shù)b,則向量與向量垂直的概率為(
)A. B. C. D.變式6.(2024·云南楚雄·高三統(tǒng)考期末)從集合中隨機地取一個數(shù),從集合中隨機地取一個數(shù),則向量與向量垂直的概率為(
)A. B. C. D.變式7.(2024·湖北·高考真題)連擲兩次骰子得到的點數(shù)分別為和,記向量與向量的夾角為,則的概率是(
)A. B. C. D.題型三:古典概型與幾何的交匯問題例7.(2024·全國·高三專題練習)傳說古希臘畢達哥拉斯學派的數(shù)學家在沙灘上面畫點或用小石子表示數(shù),他們將1,3,6,10,15,…,,稱為三角形數(shù);將1,4,9,16,25,…,,稱為正方形數(shù).現(xiàn)從200以內(nèi)的正方形數(shù)中任取2個,則其中至少有1個也是三角形數(shù)的概率為()A. B. C. D.例8.(2024·四川達州·統(tǒng)考二模)把腰底比為(比值約為,稱為黃金比)的等腰三角形叫黃金三角形,長寬比為(比值約為,稱為和美比)的矩形叫和美矩形.樹葉、花瓣、向日葵、蝴蝶等都有黃金比.在中國唐、宋時期的單檐建筑中存在較多的的比例關(guān)系,常用的紙的長寬比為和美比.圖一是正五角星(由正五邊形的五條對角線構(gòu)成的圖形),.圖二是長方體,,.在圖一圖二所有三角形和矩形中隨機抽取兩個圖形,恰好一個是黃金三角形一個是和美矩形的概率為(
)A. B. C. D.例9.(2024·江西·高三校聯(lián)考階段練習)如圖,這是第24屆國際數(shù)學家大會會標的大致圖案,它是以我國古代數(shù)學家趙爽的弦圖為基礎(chǔ)設(shè)計的.現(xiàn)用紅色和藍色給這4個三角形區(qū)域涂色,每個區(qū)域只涂一種顏色,則相鄰的區(qū)域所涂顏色不同的概率是(
)A. B. C. D.變式8.(2024·江西·校聯(lián)考二模)圓周上有8個等分點,任意選這8個點中的4個點構(gòu)成一個四邊形,則四邊形為梯形的概率是(
)A. B. C. D.變式9.(2024·廣東深圳·高三深圳市福田區(qū)福田中學??茧A段練習)《幾何原本》是古希臘數(shù)學家歐幾里得所著的一部數(shù)學巨著,大約成書于公元前300年.漢語的最早譯本是由中國明代數(shù)學家、天文學家徐光啟和意大利傳教士利瑪竇合譯,成書于1607年.該書前6卷主要包括:基本概念、三角形、四邊形、多邊形、圓、比例線段、相似形這7章,幾乎包含現(xiàn)今平面幾何的所有內(nèi)容.某高校要求數(shù)學專業(yè)的學生從這7章里任選4章進行選修,則學生李某所選的4章中,含有“基本概念”這一章的概率為(
)A. B. C. D.變式10.(2024·河北張家口·張家口市宣化第一中學??既#┤鐖D,將正方體沿交于同一頂點的三條棱的中點截去一個三棱錐,如此共可截去八個三棱錐,截取后的剩余部分稱為“阿基米德多面體”,它是一個24等邊半正多面體.從它的棱中任取兩條,則這兩條棱所在的直線為異面直線的概率為(
)A. B. C. D.變式11.(2024·全國·高三專題練習)《九章算術(shù)·商功》指出“斜解立方,得兩壍堵.斜解壍堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”意為將一個正方體斜切,可以得到兩個壍堵,將壍堵斜切,可得到一個陽馬,一個鱉臑(四個面都是直角三角形的三棱錐),如果從正方體的8個頂點中選4個頂點得到三棱錐,則得到的三棱錐是鱉臑的概率為(
)A. B. C. D.題型四:古典概型與函數(shù)的交匯問題例10.(2024·四川遂寧·統(tǒng)考三模)已知,從這四個數(shù)中任取一個數(shù),使函數(shù)有兩不相等的實數(shù)根的概率為.例11.(2024·全國·高三專題練習)已知四個函數(shù):(1),(2),(3),(4),從中任選個,則事件“所選個函數(shù)的圖象有且僅有一個公共點”的概率為.例12.(2024·河南信陽·河南省信陽市第二高級中學校聯(lián)考一模)在,,0,1,2的五個數(shù)字中,有放回地隨機取兩個數(shù)字分別作為函數(shù)中a,b的值,則該函數(shù)圖像恰好經(jīng)過第一、三、四象限的概率為.變式12.(2024·四川遂寧·統(tǒng)考一模)若函數(shù)的定義域和值域分別為和,則滿足的函數(shù)概率是.變式13.(2024·全國·高三專題練習)一個盒子中裝有六張卡片,上面分別寫著如下六個定義域為R的函數(shù):,,,,,.現(xiàn)從盒子中逐一抽取卡片并判函數(shù)的奇偶性,每次抽出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,設(shè)抽取次數(shù)為X,則的概率為.變式14.(2024·全國·高三專題練習)對于定義域為D的函數(shù),若對任意的,當時都有,則稱函數(shù)為“不嚴格單調(diào)增函數(shù)”,若函數(shù)的定義域,值域為,則函數(shù)為“不嚴格單調(diào)增函數(shù)”的概率是.變式15.(2024·上海·高三專題練習)從3個函數(shù):和中任取2個,其積函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是.題型五:古典概型與數(shù)列的交匯問題例13.(2024·江西鷹潭·統(tǒng)考一模)斐波那契數(shù)列因數(shù)學家萊昂納多?斐波那契(LeonardodaFibonaci)以兔子繁殖為例而引入,故又稱為“兔子數(shù)列”.因n趨向于無窮大時,無限趨近于黃金分割數(shù),也被稱為黃金分割數(shù)列.在數(shù)學上,斐波那契數(shù)列由以下遞推方法定義:數(shù)列滿足,,若從該數(shù)列前10項中隨機抽取2項,則抽取的2項至少有1項是奇數(shù)的概率為(
)A. B. C. D.例14.(2024·全國·高三專題練習)斐波那契數(shù)列又稱黃金分割數(shù)列,也叫“兔子數(shù)列”,在數(shù)學上,斐波那契數(shù)列被以下遞推方法定義:數(shù)列滿足,,先從該數(shù)列前12項中隨機抽取1項,是質(zhì)數(shù)的概率是(
)A. B. C. D.例15.(2024·黑龍江·黑龍江實驗中學??既#┮阎吵楠劵顒拥闹歇劼蕿椋看纬楠劵ゲ挥绊懀畼?gòu)造數(shù)列,使得,記,則的概率為(
)A. B. C. D.變式16.(2024·山東濰坊·高三統(tǒng)考階段練習)數(shù)列共有10項,且滿足:,,每一項與前一項的差為或,從滿足上述條件的所有數(shù)列中任取一個數(shù)列,則取到的數(shù)列滿足每一項與前一項的差為的項都相鄰的概率為(
)A. B. C. D.變式17.(2024·全國·高三專題練習)斐波那契數(shù)列因數(shù)學家萊昂納多·斐波那契(LeonardodaFibonaci)以兔子繁殖為例而引入,故又稱為“兔子數(shù)列”.因n趨向于無窮大時,無限趨近于黃金分割數(shù),也被稱為黃金分割數(shù)列.在數(shù)學上,斐波那契數(shù)列由以下遞推方法定義:數(shù)列滿足,,若從該數(shù)列前10項中隨機抽取1項,則抽取項是奇數(shù)的概率為(
)A. B. C. D.變式18.(2024·全國·高三專題練習)記數(shù)列的前項和為,已知,在數(shù)集中隨機抽取一個數(shù)作為,在數(shù)集中隨機抽取一個數(shù)作為.在這些不同數(shù)列中隨機抽取一個數(shù)列,則是遞增數(shù)列的概率為(
)A. B. C. D.變式19.(2024·全國·高三專題練習)已知數(shù)列的前n項和為,且,若數(shù)列滿足,從中任取兩個數(shù),則至少一個數(shù)滿足的概率為(
)A. B. C. D.變式20.(2024·全國·高三專題練習)已知等比數(shù)列的首項為1,公比為-2,在該數(shù)列的前六項中隨機抽取兩項,,則的概率為(
)A. B. C. D.題型六:古典概率與統(tǒng)計的綜合例16.(2024·四川宜賓·統(tǒng)考二模)2022年中國新能源汽車銷量繼續(xù)蟬聯(lián)全球第一,以比亞迪為代表的中國汽車交出了一份漂亮的“成績單”,比亞迪新能源汽車成為2022年全球新能源汽車市場銷量冠軍,為了解中國新能源車的銷售價格情況,隨機調(diào)查了10000輛新能源車的銷售價格,得到如圖的樣本數(shù)據(jù)的頻率分布直方圖:
(1)估計一輛中國新能源車的銷售價格位于區(qū)間(單位:萬元)的概率,以及中國新能源車的銷售價格的眾數(shù);(2)現(xiàn)有6輛新能源車,其中2輛為比亞迪新能源車,從這6輛新能源車中隨機抽取2輛,求至少有1輛比亞迪新能源車的概率.例17.(2024·北京西城·高三北京市第三十五中學校考開學考試)為了解某中學高一年級學生身體素質(zhì)情況,對高一年級的(1)班(8)班進行了抽測,采取如下方式抽樣:每班隨機各抽10名學生進行身體素質(zhì)監(jiān)測.經(jīng)統(tǒng)計,每班10名學生中身體素質(zhì)監(jiān)測成績達到優(yōu)秀的人數(shù)散點圖如下(軸表示對應(yīng)的班號,軸表示對應(yīng)的優(yōu)秀人數(shù)):
(1)若用散點圖預(yù)測高一年級學生身體素質(zhì)情況,從高一年級學生中任意抽測1人,求該生身體素質(zhì)監(jiān)測成績達到優(yōu)秀的概率;(2)若從以上統(tǒng)計的高一(2)班和高一(4)班的學生中各抽出1人,設(shè)表示2人中身體素質(zhì)監(jiān)測成績達到優(yōu)秀的人數(shù),求的分布列及其數(shù)學期望;(3)假設(shè)每個班學生身體素質(zhì)優(yōu)秀的概率與該班隨機抽到的10名學生的身體素質(zhì)優(yōu)秀率相等.現(xiàn)在從每班中分別隨機抽取1名同學,用“”表示第班抽到的這名同學身體素質(zhì)優(yōu)秀,“”表示第班抽到的這名同學身體素質(zhì)不是優(yōu)秀().寫出方差的大小關(guān)系(不必寫出證明過程).例18.(2024·四川成都·校聯(lián)考模擬預(yù)測)某重點大學為了解準備保研或者考研的本科生每天課余學習時間,隨機抽取了名這類大學生進行調(diào)查,將收集到的課余學習時間(單位:)整理后得到如下表格:課余學習時間人數(shù)(1)估計這名大學生每天課余學習時間的中位數(shù);(2)根據(jù)分層抽樣的方法從課余學習時間在和,這兩組中抽取人,再從這人中隨機抽取人,求抽到的人的課余學習時間都在的概率.變式21.(2024·海南??凇じ呷y(tǒng)考期中)為促進全民健身更高水平發(fā)展,更好地滿足人民群眾的健身和健康需求,國家相關(guān)部門制定發(fā)布了《全民健身計劃(2021—2025年)》.相關(guān)機構(gòu)統(tǒng)計了我國2018年至2022年(2018年的年份序號為1,依此類推)健身人群數(shù)量(即有健身習慣的人數(shù),單位:百萬),所得數(shù)據(jù)如圖所示:
(1)若每年健身人群中放棄健身習慣的人數(shù)忽略不計,從2022年的健身人群中隨機抽取5人,設(shè)其中從2018年開始就有健身習慣的人數(shù)為X,求;(2)由圖可知,我國健身人群數(shù)量與年份序號線性相關(guān),請用相關(guān)系數(shù)加以說明.附:相關(guān)系數(shù).參考數(shù)據(jù):,,,,.變式22.(2024·江西宜春·高三江西省豐城拖船中學??奸_學考試)某市教師進城考試分筆試和面試兩部分,現(xiàn)把參加筆試的40名教師的成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100].得到頻率分布直方圖如圖所示.
(1)分別求成績在第4,5組的教師人數(shù);(2)若考官決定在筆試成績較高的第3,4,5組中用分層抽樣抽取6名進入面試,①已知甲和乙的成績均在第3組,求甲和乙同時進入面試的概率;②若決定在這6名考生中隨機抽取2名教師接受考官D的面試,設(shè)第4組中有X名教師被考官D面試,求X的分布列和數(shù)學期望.變式23.(2024·全國·高三專題練習)插花是一種高雅的審美藝術(shù),是表現(xiàn)植物自然美的一種造型藝術(shù),與建筑、盆景等藝術(shù)形式相似,是最優(yōu)美的空間造型藝術(shù)之一。為了通過插花藝術(shù)激發(fā)學生對美的追求,某校舉辦了以“魅力校園、花香溢校園”為主題的校園插花比賽。比賽按照百分制的評分標準進行評分,評委由10名專業(yè)教師、10名非專業(yè)教師以及20名學生會代表組成,各參賽小組的最后得分為評委所打分數(shù)的平均分.比賽結(jié)束后,得到甲組插花作品所得分數(shù)的頻率分布直方圖和乙組插花作品所得分數(shù)的頻數(shù)分布表,如下所示:
分數(shù)區(qū)間頻數(shù)151214431定義評委對插花作品的“觀賞值”如下所示:分數(shù)區(qū)間觀賞值123(1)估計甲組插花作品所得分數(shù)的中位數(shù)(結(jié)果保留兩位小數(shù));(2)若該校擬從甲、乙兩組插花作品中選出1個用于展覽,從這兩組插花作品的最后得分來看該校會選哪一組,請說明理由(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(3)從40名評委中隨機抽取1人進行調(diào)查,試估計其對乙組插花作品的“觀賞值”比對甲組插花作品的“觀賞值”高的概率.【解題方法總結(jié)】求解古典概型的交匯問題的步驟(1)將題目條件中的相關(guān)知識轉(zhuǎn)化為事件;(2)判斷事件是否為古典概型;(3)選用合適的方法確定樣本點個數(shù);(4)代入古典概型的概率公式求解.題型七:有放回與無放回問題的概率例19.(2024·遼寧鞍山·統(tǒng)考模擬預(yù)測)一個袋子中有大小和質(zhì)地相同的5個球,其中有3個紅色球,2個白色球,從袋中不放回地依次隨機摸出2個球,則第2次摸到紅色球的概率為.例20.(2024·黑龍江哈爾濱·哈九中校考模擬預(yù)測)已知紅箱內(nèi)有3個紅球、2個白球,白箱內(nèi)有2個紅球、3個白球,所有小球大小、形狀完全相同.第一次從紅箱內(nèi)取出一球后再放回去,第二次從與第一次取出的球顏色相同的箱子內(nèi)取出一球,然后再放回去,以此類推,第次從與第k次取出的球顏色相同的箱子內(nèi)取出一球,然后再放回去.則第3次取出的球是紅球的概率為.例21.(2024·湖北·校聯(lián)考三模)袋中有形狀和大小相同的兩個紅球和三個白球,甲、乙兩人依次不放回地從袋中摸出一球,后摸球的人不知前面摸球的結(jié)果,則乙摸出紅球的概率是.變式24.(2024·浙江·校聯(lián)考二模)袋中有形狀大小相同的球5個,其中紅色3個,黃色2個,現(xiàn)從中隨機連續(xù)摸球,每次摸1個,當有兩種顏色的球被摸到時停止摸球,記隨機變量為此時已摸球的次數(shù),則.變式25.(2024·全國·模擬預(yù)測)小穎和小星在玩抽卡游戲,規(guī)則如下:桌面上放有5張背面完全相同的卡牌,卡牌正面印有兩種顏色的圖案,其中一張為紫色,其余為藍色.現(xiàn)將這些卡牌背面朝上放置,小穎和小星輪流抽卡,每次抽一張卡,并且抽取后不放回,直至抽到印有紫色圖案的卡牌停止抽卡.若小穎先抽卡,則小星抽到紫卡的概率為.變式26.(2024·浙江·模擬預(yù)測)袋中有大小質(zhì)地均相同的1個黑球,2個白球,3個紅球,現(xiàn)從袋中隨機取球,每次取一個,不放回,直到某種顏色的球全部取出為止,則最后一個球是白球的概率是.題型八:概率的基本性質(zhì)例22.(2024·全國·高三專題練習)某企業(yè)有甲、乙兩個工廠共生產(chǎn)一精密儀器件,其中甲工廠生產(chǎn)了件,乙工廠生產(chǎn)了件,為了解這兩個工廠各自的生產(chǎn)水平,質(zhì)檢人員決定采用分層抽樣的方法從所生產(chǎn)的產(chǎn)品中隨機抽取件樣品,已知該精密儀器按照質(zhì)量可分為四個等級.若從所抽取的樣品中隨機抽取一件進行檢測,恰好抽到甲工廠生產(chǎn)的等級產(chǎn)品的概率為,則抽取的三個等級中甲工廠生產(chǎn)的產(chǎn)品共有件.例23.(2024·上海徐匯·高三上海民辦南模中學校考階段練習)已知袋中有(為正整數(shù))個大小相同的編號球,其中黃球8個,紅球個,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高效能玻璃鋼化糞池采購協(xié)議范本版B版
- 2024自用房屋租賃合同
- 2025年違約借款合同糾紛解決途徑3篇
- 二零二五年度新能源汽車OEM制造與零部件供應(yīng)合同3篇
- 2025廠房土地買賣合同中對環(huán)境友好型建筑標準的約定3篇
- 2025年度森林資源管理與測繪合同范本3篇
- 2024網(wǎng)絡(luò)安全與信息保密合同
- 二零二四三方詢價采購合同-國際物流運輸服務(wù)采購2篇
- 2024石料礦山資源整合與開采合同3篇
- 二零二五版全國CHS技術(shù)交流與合作合同3篇
- 勞務(wù)投標技術(shù)標
- 研發(fā)管理咨詢項目建議書
- 濕瘡的中醫(yī)護理常規(guī)課件
- 轉(zhuǎn)錢委托書授權(quán)書范本
- 一種配網(wǎng)高空作業(yè)智能安全帶及預(yù)警系統(tǒng)的制作方法
- 某墓園物業(yè)管理日常管護投標方案
- 蘇教版六年級數(shù)學上冊集體備課記載表
- NUDD新獨難異 失效模式預(yù)防檢查表
- 內(nèi)蒙古匯能煤電集團有限公司長灘露天煤礦礦山地質(zhì)環(huán)境保護與土地復墾方案
- 22S702 室外排水設(shè)施設(shè)計與施工-鋼筋混凝土化糞池
- 2013日產(chǎn)天籟全電路圖維修手冊45車身控制系統(tǒng)
評論
0/150
提交評論