版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省張家界市永定區(qū)2024屆中考猜題數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為()A.8 B.8 C.4 D.62.如圖,按照三視圖確定該幾何體的側(cè)面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm23.如圖,甲、乙、丙圖形都是由大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個數(shù).其中主視圖相同的是()A.僅有甲和乙相同 B.僅有甲和丙相同C.僅有乙和丙相同 D.甲、乙、丙都相同4.化簡的結(jié)果是()A. B. C. D.5.由若干個相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個幾何體的小立方體的個數(shù)是()A.3 B.4 C.5 D.66.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處7.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.8.一元二次方程的根的情況是()A.有一個實數(shù)根 B.有兩個相等的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根9.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:310.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆?,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設(shè)該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C二、填空題(本大題共6個小題,每小題3分,共18分)11.一個正多邊形的一個內(nèi)角是它的一個外角的5倍,則這個多邊形的邊數(shù)是_______________12.在△ABC中,∠C=90°,AC=3,BC=4,點D,E,F分別是邊AB,AC,BC的中點,則13.如圖,從直徑為4cm的圓形紙片中,剪出一個圓心角為90°的扇形OAB,且點O、A、B在圓周上,把它圍成一個圓錐,則圓錐的底面圓的半徑是_____cm.14.從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片(大小、形狀完全相同)中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.15.方程的兩個根為、,則的值等于______.16.如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標(biāo)為(10,8),則點E的坐標(biāo)為.三、解答題(共8題,共72分)17.(8分)俄羅斯世界杯足球賽期間,某商店銷售一批足球紀(jì)念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當(dāng)銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設(shè)每天銷售量為y本,銷售單價為x元.請直接寫出y與x之間的函數(shù)關(guān)系式和自變量x的取值范圍;當(dāng)每本足球紀(jì)念冊銷售單價是多少元時,商店每天獲利2400元?將足球紀(jì)念冊銷售單價定為多少元時,商店每天銷售紀(jì)念冊獲得的利潤w元最大?最大利潤是多少元?18.(8分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當(dāng)∠D=°時,四邊形FOBE是菱形.19.(8分)如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)20.(8分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點A(3,0)、B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設(shè)點P的橫坐標(biāo)為t.分別求出直線AB和這條拋物線的解析式.若點P在第四象限,連接AM、BM,當(dāng)線段PM最長時,求△ABM的面積.是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標(biāo);若不存在,請說明理由.22.(10分)先化簡,再求值:,其中x=,y=.23.(12分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,求的值.24.已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標(biāo)及A,B兩點的坐標(biāo);(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內(nèi),求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當(dāng)△PAB的面積是△ABC面積的2倍時,求m,n的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.2、A【解析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側(cè)面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應(yīng)該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側(cè)面積=πrl=π×6×4=14πcm1.故選:A.【點睛】此題考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.3、B【解析】試題分析:根據(jù)分析可知,甲的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;乙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,1;丙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;則主視圖相同的是甲和丙.考點:由三視圖判斷幾何體;簡單組合體的三視圖.4、D【解析】
將除法變?yōu)槌朔ǎ喍胃?,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關(guān)鍵.5、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從主視圖看第一列兩個正方體,說明俯視圖中的左邊一列有兩個正方體,主視圖右邊的一列只有一行,說明俯視圖中的右邊一行只有一列,所以此幾何體共有四個正方體.故選B.6、D【解析】
到三條相互交叉的公路距離相等的地點應(yīng)是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內(nèi)角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內(nèi)角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質(zhì);這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.7、A【解析】
∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.8、D【解析】試題分析:△=22-4×4=-12<0,故沒有實數(shù)根;故選D.考點:根的判別式.9、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.10、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,看懂圖形,認(rèn)真分析是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
設(shè)這個正多邊的外角為x°,則內(nèi)角為5x°,根據(jù)內(nèi)角和外角互補可得x+5x=180,解可得x的值,再利用外角和360°÷外角度數(shù)可得邊數(shù).【詳解】設(shè)這個正多邊的外角為x°,由題意得:x+5x=180,解得:x=30,360°÷30°=1.故答案為:1.【點睛】此題主要考查了多邊形的內(nèi)角和外角,關(guān)鍵是計算出外角的度數(shù),進而得到邊數(shù).12、6【解析】
首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點D、E、F分別是邊AB、AC、BC的中點,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點睛】本題考查了勾股定理和三角形中位線定理.13、【解析】
設(shè)圓錐的底面圓的半徑為r,由于∠AOB=90°得到AB為圓形紙片的直徑,則OB=cm,根據(jù)弧長公式計算出扇形OAB的弧AB的長,然后根據(jù)圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進行計算.【詳解】解:設(shè)圓錐的底面圓的半徑為r,連結(jié)AB,如圖,∵扇形OAB的圓心角為90°,∴∠AOB=90°,∴AB為圓形紙片的直徑,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的長=π,∴2πr=π,∴r=(cm).故答案為.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了圓周角定理和弧長公式.14、1【解析】
根據(jù)概率的公式進行計算即可.【詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【點睛】考查概率的計算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.15、1.【解析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系求解即可.【詳解】解:根據(jù)題意得,,所以===1.故答案為1.【點睛】本題考查了根與系數(shù)的關(guān)系:若、是一元二次方程(a≠0)的兩根時,,.16、(10,3)【解析】
根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設(shè)EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標(biāo).【詳解】∵四邊形AOCD為矩形,D的坐標(biāo)為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設(shè)EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標(biāo)為(10,3).三、解答題(共8題,共72分)17、(1)y=﹣10x+740(44≤x≤52);(2)當(dāng)每本足球紀(jì)念冊銷售單價是50元時,商店每天獲利2400元;(3)將足球紀(jì)念冊銷售單價定為52元時,商店每天銷售紀(jì)念冊獲得的利潤w元最大,最大利潤是2640元.【解析】
(1)售單價每上漲1元,每天銷售量減少10本,則售單價每上漲(x﹣44)元,每天銷售量減少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用銷售單價不低于44元,且獲利不高于30%確定x的范圍;(2)利用每本的利潤乘以銷售量得到總利潤得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范圍確定銷售單價;(3)利用每本的利潤乘以銷售量得到總利潤得到w=(x﹣40)(﹣10x+740),再把它變形為頂點式,然后利用二次函數(shù)的性質(zhì)得到x=52時w最大,從而計算出x=52時對應(yīng)的w的值即可.【詳解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根據(jù)題意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:當(dāng)每本足球紀(jì)念冊銷售單價是50元時,商店每天獲利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,當(dāng)x<57時,w隨x的增大而增大,而44≤x≤52,所以當(dāng)x=52時,w有最大值,最大值為﹣10(52﹣57)2+2890=2640,答:將足球紀(jì)念冊銷售單價定為52元時,商店每天銷售紀(jì)念冊獲得的利潤w元最大,最大利潤是2640元.【點睛】本題考查了二次函數(shù)的應(yīng)用,一元二次方程的應(yīng)用,解決二次函數(shù)應(yīng)用類問題時關(guān)鍵是通過題意,確定出二次函數(shù)的解析式,然后利用二次函數(shù)的性質(zhì)確定其最大值;在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.18、(1)詳見解析;(2)30.【解析】
(1)利用切線的性質(zhì)得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數(shù).【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.19、3+3.5【解析】
延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應(yīng)用﹣仰角俯角問題;2、解直角三角形的應(yīng)用﹣坡度坡角問題20、(1)詳見解析;(2)【解析】
(1)根據(jù)正方形的性質(zhì)和等腰直角三角形的性質(zhì)以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質(zhì)和四邊形周長解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,F(xiàn)D=DE,∴△CDF≌△ADE(SAS);(2)如圖,連接AC.∵四邊形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC=,∴AC=2,∴OA+OC=OA+OE=AE=,∴四邊形ABCO的周長AB+BC+OA+OC=.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),難點在于(2)作輔助線構(gòu)造出全等三角形.21、(1)拋物線的解析式是.直線AB的解析式是.(2).(3)P點的橫坐標(biāo)是或.【解析】
(1)分別利用待定系數(shù)法求兩函數(shù)的解析式:把A(3,0)B(0,﹣3)分別代入y=x2+mx+n與y=kx+b,得到關(guān)于m、n的兩個方程組,解方程組即可;(2)設(shè)點P的坐標(biāo)是(t,t﹣3),則M(t,t2﹣2t﹣3),用P點的縱坐標(biāo)減去M的縱坐標(biāo)得到PM的長,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根據(jù)二次函數(shù)的最值得到當(dāng)t=﹣=時,PM最長為=,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計算即可;(3)由PM∥OB,根據(jù)平行四邊形的判定得到當(dāng)PM=OB時,點P、M、B、O為頂點的四邊形為平行四邊形,然后討論:當(dāng)P在第四象限:PM=OB=3,PM最長時只有,所以不可能;當(dāng)P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;當(dāng)P在第三象限:PM=OB=3,t2﹣3t=3,分別解一元二次方程即可得到滿足條件的t的值.【詳解】解:(1)把A(3,0)B(0,-3)代入,得解得所以拋物線的解析式是.設(shè)直線AB的解析式是,把A(3,0)B(0,)代入,得解得所以直線AB的解析式是.(2)設(shè)點P的坐標(biāo)是(),則M(,),因為在第四象限,所以PM=,當(dāng)PM最長時,此時==.(3)若存在,則可能是:①P在第四象限:平行四邊形OBMP,PM=OB=3,PM最長時,所以不可能.②P在第一象限平行四邊形OBPM:PM=OB=3,,解得,(舍去),所以P點的橫坐標(biāo)是.③P在第三象限平行四邊形OBPM:PM=OB=3,,解得(舍去),①,所以P點的橫坐標(biāo)是.所以P點的橫坐標(biāo)是或.22、x+y,.【解析】試題分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入即可解答本題.試題解析:原式===x+y,當(dāng)x=,y==2時,原式=﹣2+2=.23、【解析】
根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠DCA=∠BAC,從而得到∠EAC=∠DCA,設(shè)AE與CD相交于F,根據(jù)等角對等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形得出對應(yīng)邊成比,設(shè)DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對邊相等求出AB,然后代入進行計算即可得解.【詳解】解:∵矩形沿直線AC折疊,點B落在點E處,∴CE=BC,∠BAC=∠CAE,∵矩形對邊AD=BC,∴AD=CE,設(shè)AE、CD相交于點F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,設(shè)EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【點睛】本題考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,綜合題難度較大,求出△ACF和△DEF相似是解題的關(guān)鍵,也是本題的難點.24、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標(biāo),聯(lián)立拋物線與直線的解析式即可求出A、B的坐標(biāo).(Ⅱ)由題意可知:新拋物線的頂點坐標(biāo)為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標(biāo)分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點F,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鶴壁道路運輸貨運從業(yè)資格證模擬考試題庫
- 2025年廣西貨運從業(yè)資格證模擬考試試題題庫
- 《食品安全危機管理》課件
- 2025簡單的技術(shù)咨詢合同格式
- 2024年智慧城市建設(shè)投資入股協(xié)議書3篇
- 墨爾本大學(xué)java課程課件chap
- 2025消防工程施工合同
- 2024年度生物制藥投資入股合同范本大全3篇
- 2025軟件委托開發(fā)合同書
- 2025印刷裝訂的合同范文
- 期末綜合試卷(含答案)2024-2025學(xué)年蘇教版數(shù)學(xué)四年級上冊
- 10以內(nèi)加減法練習(xí)題1000題-直接打印版
- 必刷題2024六年級英語上冊語法結(jié)構(gòu)專項專題訓(xùn)練(含答案)
- JGT163-2013鋼筋機械連接用套筒
- 人教版八年級地理(上)全冊復(fù)習(xí)教學(xué)設(shè)計(含教學(xué)反思)
- 互聯(lián)網(wǎng)金融(同濟大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年同濟大學(xué)
- 中國痔病診療指南(2020版)
- 2024廣西公需課高質(zhì)量共建“一帶一路”譜寫人類命運共同體新篇章答案
- 2024年連云港專業(yè)技術(shù)人員繼續(xù)教育《飲食、運動和健康的關(guān)系》92分(試卷)
- 國家開放大學(xué)《計算機應(yīng)用基礎(chǔ)(本)》學(xué)士畢業(yè)論文《家用電器銷售管理系統(tǒng)的設(shè)計與實現(xiàn)》
- GA 1809-2022城市供水系統(tǒng)反恐怖防范要求
評論
0/150
提交評論