安徽省長豐縣高中數(shù)學 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法教案 新人教A版選修1-2_第1頁
安徽省長豐縣高中數(shù)學 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法教案 新人教A版選修1-2_第2頁
安徽省長豐縣高中數(shù)學 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法教案 新人教A版選修1-2_第3頁
安徽省長豐縣高中數(shù)學 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法教案 新人教A版選修1-2_第4頁
安徽省長豐縣高中數(shù)學 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法教案 新人教A版選修1-2_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省長豐縣高中數(shù)學第二章推理與證明2.2直接證明與間接證明2.2.2反證法教案新人教A版選修1-2學校授課教師課時授課班級授課地點教具課程基本信息1.課程名稱:高中數(shù)學選修1-2第二章推理與證明2.2直接證明與間接證明

2.教學年級和班級:安徽省長豐縣高中一年級(1)班

3.授課時間:2022年10月10日星期二第1課時(45分鐘)

4.教學時數(shù):1課時(45分鐘)核心素養(yǎng)目標本節(jié)課旨在培養(yǎng)學生的數(shù)學邏輯推理能力和數(shù)學思維能力,使學生理解并掌握反證法的基本概念和運用方法,提升學生的問題解決能力和創(chuàng)新意識。通過本節(jié)課的學習,學生將能夠:

1.理解反證法的定義和基本步驟,能夠運用反證法進行有效的證明。

2.培養(yǎng)學生的批判性思維,使學生能夠?qū)ψC明過程進行合理的評價和反思。

3.培養(yǎng)學生的合作意識,使學生能夠在小組討論中積極交流,共同解決問題。

4.提升學生的數(shù)學語言表達能力,使學生能夠清晰、準確地表述解題思路和證明過程。重點難點及解決辦法重點:

1.反證法的定義和基本步驟。

2.運用反證法進行證明的方法和技巧。

難點:

1.反證法的理解和運用,特別是對反證法的步驟和邏輯關(guān)系的把握。

2.如何正確選擇反證法的適用場景和條件。

解決辦法:

1.通過具體的例題和練習,讓學生反復(fù)練習反證法的步驟和運用,加深對其的理解。

2.通過小組討論和互助學習,讓學生在實踐中交流和分享反證法的運用經(jīng)驗和技巧。

3.教師在教學中注重引導(dǎo)和啟發(fā),幫助學生建立反證法的邏輯框架,引導(dǎo)學生正確選擇反證法的適用場景和條件。

4.提供充足的練習和反饋,讓學生在實踐中不斷鞏固和提高反證法的運用能力。教學方法與手段教學方法:

1.引導(dǎo)發(fā)現(xiàn)法:教師通過提出問題,引導(dǎo)學生思考和探索,激發(fā)學生的學習興趣和主動性。例如,在講解反證法時,教師可以提出“為什么我們需要反證法?”等問題,讓學生思考并發(fā)現(xiàn)反證法的重要性。

2.合作學習法:學生分組進行討論和合作,共同解決問題。教師可以設(shè)計一些小組討論題目,如“請小組討論反證法的步驟和運用方法”,讓學生在討論中互相交流和學習。

3.實踐操作法:教師設(shè)計一些實際操作題目,讓學生動手實踐,加深對反證法的理解和運用。例如,可以讓學生嘗試證明一些常見的數(shù)學定理,運用反證法進行證明。

教學手段:

1.多媒體教學:利用多媒體設(shè)備,如PPT、視頻等,進行教學。教師可以制作一些反證法的教學PPT,通過圖片、動畫等形式展示反證法的步驟和例題,使學生更直觀地理解和掌握反證法。

2.在線教學平臺:利用在線教學平臺,如學習通、黑板等,進行教學。教師可以在平臺上發(fā)布一些反證法的練習題和討論題目,讓學生在線進行練習和討論。

3.教學軟件:利用教學軟件,如幾何畫板、數(shù)學軟件等,進行教學。教師可以利用這些軟件展示一些幾何圖形和數(shù)學證明過程,讓學生更直觀地理解和掌握反證法。教學實施過程1.課前自主探索

教師活動:

-發(fā)布預(yù)習任務(wù):通過在線平臺或班級微信群,發(fā)布預(yù)習資料(如PPT、視頻、文檔等),明確預(yù)習目標和要求。

-設(shè)計預(yù)習問題:圍繞反證法課題,設(shè)計一系列具有啟發(fā)性和探究性的問題,引導(dǎo)學生自主思考。

-監(jiān)控預(yù)習進度:利用平臺功能或?qū)W生反饋,監(jiān)控學生的預(yù)習進度,確保預(yù)習效果。

學生活動:

-自主閱讀預(yù)習資料:按照預(yù)習要求,自主閱讀預(yù)習資料,理解反證法知識點。

-思考預(yù)習問題:針對預(yù)習問題,進行獨立思考,記錄自己的理解和疑問。

-提交預(yù)習成果:將預(yù)習成果(如筆記、思維導(dǎo)圖、問題等)提交至平臺或老師處。

教學方法/手段/資源:

-自主學習法:引導(dǎo)學生自主思考,培養(yǎng)自主學習能力。

-信息技術(shù)手段:利用在線平臺、微信群等,實現(xiàn)預(yù)習資源的共享和監(jiān)控。

作用與目的:

-幫助學生提前了解反證法課題,為課堂學習做好準備。

-培養(yǎng)學生的自主學習能力和獨立思考能力。

2.課中強化技能

教師活動:

-導(dǎo)入新課:通過故事、案例或視頻等方式,引出反證法課題,激發(fā)學生的學習興趣。

-講解知識點:詳細講解反證法的定義、步驟和運用方法,結(jié)合實例幫助學生理解。

-組織課堂活動:設(shè)計小組討論、實際練習等活動,讓學生在實踐中掌握反證法技能。

-解答疑問:針對學生在學習中產(chǎn)生的疑問,進行及時解答和指導(dǎo)。

學生活動:

-聽講并思考:認真聽講,積極思考老師提出的問題。

-參與課堂活動:積極參與小組討論、實際練習等活動,體驗反證法的應(yīng)用。

-提問與討論:針對不懂的問題或新的想法,勇敢提問并參與討論。

教學方法/手段/資源:

-講授法:通過詳細講解,幫助學生理解反證法的知識點。

-實踐活動法:設(shè)計實踐活動,讓學生在實踐中掌握反證法技能。

-合作學習法:通過小組討論等活動,培養(yǎng)學生的團隊合作意識和溝通能力。

作用與目的:

-幫助學生深入理解反證法知識點,掌握反證法技能。

-通過實踐活動,培養(yǎng)學生的動手能力和解決問題的能力。

-通過合作學習,培養(yǎng)學生的團隊合作意識和溝通能力。

3.課后拓展應(yīng)用

教師活動:

-布置作業(yè):根據(jù)反證法課題,布置適量的課后作業(yè),鞏固學習效果。

-提供拓展資源:提供與反證法課題相關(guān)的拓展資源(如書籍、網(wǎng)站、視頻等),供學生進一步學習。

-反饋作業(yè)情況:及時批改作業(yè),給予學生反饋和指導(dǎo)。

學生活動:

-完成作業(yè):認真完成老師布置的課后作業(yè),鞏固學習效果。

-拓展學習:利用老師提供的拓展資源,進行進一步的學習和思考。

-反思總結(jié):對自己的學習過程和成果進行反思和總結(jié),提出改進建議。

教學方法/手段/資源:

-自主學習法:引導(dǎo)學生自主完成作業(yè)和拓展學習。

-反思總結(jié)法:引導(dǎo)學生對自己的學習過程和成果進行反思和總結(jié)。

作用與目的:

-鞏固學生在課堂上學到的反證法知識點和技能。

-通過拓展學習,拓寬學生的知識視野和思維方式。

-通過反思總結(jié),幫助學生發(fā)現(xiàn)自己的不足并提出改進建議,促進自我提升。拓展與延伸1.提供與本節(jié)課內(nèi)容相關(guān)的拓展閱讀材料:

-《數(shù)學歸納法與反證法》:介紹數(shù)學歸納法和反證法的原理及其應(yīng)用,深入剖析兩種證明方法的優(yōu)缺點。

-《反證法在幾何證明中的應(yīng)用》:舉例說明反證法在幾何證明中的重要作用,提高學生對反證法的認識。

-《反證法與邏輯推理》:探討反證法在邏輯推理中的應(yīng)用,培養(yǎng)學生的邏輯思維能力。

2.鼓勵學生進行課后自主學習和探究:

-探究反證法在其他學科領(lǐng)域的應(yīng)用:引導(dǎo)學生了解反證法在物理學、化學等學科中的應(yīng)用,拓寬知識面。

-設(shè)計反證法的小游戲:通過編寫反證法相關(guān)的小游戲,讓學生在游戲中鞏固所學知識,提高運用能力。

-舉辦反證法知識競賽:組織班級或?qū)W校范圍內(nèi)的反證法知識競賽,激發(fā)學生的學習興趣和競爭意識。

-探究數(shù)學史上的反證法經(jīng)典案例:介紹數(shù)學史上一些著名的反證法案例,如歐幾里得的反證法等,讓學生了解反證法的發(fā)展歷程。

教學方法與手段:

-自主學習法:引導(dǎo)學生自主閱讀拓展材料,培養(yǎng)獨立思考和解決問題的能力。

-合作學習法:組織學生進行小組討論,共同探討反證法的應(yīng)用和拓展,培養(yǎng)團隊合作意識。

-實踐活動法:鼓勵學生進行課后實踐,如編寫小游戲、參加知識競賽等,提高學生的動手能力和問題解決能力。

作用與目的:

-通過對拓展閱讀材料的學習,鞏固和拓展學生在本節(jié)課上學到的反證法知識。

-培養(yǎng)學生課后自主學習和探究的習慣,提高學生的學習興趣和主動性。

-通過實踐活動,培養(yǎng)學生的動手能力和問題解決能力,提高學生的綜合素質(zhì)。

-幫助學生了解反證法在各個領(lǐng)域的應(yīng)用,拓寬知識面,提高學生的綜合素質(zhì)。課后作業(yè)1.題目:證明如果一個整數(shù)n大于2,那么n一定可以表示成兩個整數(shù)的和,其中至少有一個是偶數(shù)。

答案:假設(shè)n不能表示成兩個整數(shù)的和,其中至少有一個是偶數(shù)。那么n只能表示成兩個奇數(shù)的和。設(shè)這兩個奇數(shù)分別為2k+1和2m+1(k、m為整數(shù)),則n=(2k+1)+(2m+1)=2(k+m+1)。因為k、m、k+m+1都是整數(shù),所以n可以表示成2的倍數(shù),即n是偶數(shù),與假設(shè)矛盾。因此,原命題成立。

2.題目:已知平行四邊形ABCD的對角線交于點E,證明:對角線AC和BD互相平分。

答案:連接BD,使其與AC相交于點F。因為ABCD是平行四邊形,所以AD//BC,EF//AC。又因為EF是AC的垂線,所以EF平分AC。同理,可以證明EF平分BD。因此,對角線AC和BD互相平分。

3.題目:已知三角形ABC中,∠ABC是直角,AB=AC,證明:三角形ABC是等腰直角三角形。

答案:因為AB=AC,所以三角形ABC是等腰三角形。又因為∠ABC是直角,所以三角形ABC是直角三角形。因此,三角形ABC是等腰直角三角形。

4.題目:已知正方形ABCD的邊長為a,證明:對角線AC和BD的長度相等,且都是a√2。

答案:連接BD,使其與AC相交于點E。因為ABCD是正方形,所以∠ABC=90°。又因為AC是BD的垂線,所以∠DAC=∠BCE=90°。因此,三角形DAC和三角形BCE是全等的直角三角形。所以,DA=BC=a,AC=BE=a√2。因此,對角線AC和BD的長度相等,且都是a√2。

5.題目:已知三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,證明:a2+b2=c2。

答案:假設(shè)a2+b2≠c2。那么三角形ABC不是直角三角形。設(shè)∠C為銳角,則cosC>0。由余弦定理可得:c2=a2+b2-2abcosC。因為a2+b2≠c2,所以-2abcosC≠0,即cosC≠0。然而,當∠C為銳角時,cosC<0,與假設(shè)矛盾。因此,原命題成立,即a2+b2=c2。反思改進措施(一)教學特色創(chuàng)新

1.引入現(xiàn)代教育技術(shù):在教學過程中,充分利用多媒體教學手段,如PPT、視頻等,直觀展示反證法的應(yīng)用場景,幫助學生更好地理解和掌握反證法的原理和應(yīng)用。

2.設(shè)計實踐性作業(yè):布置一些實踐性較強的作業(yè),如編寫反證法的小游戲、設(shè)計反證法的應(yīng)用案例等,讓學生在實踐中鞏固所學知識,提高解決實際問題的能力。

3.組織小組合作學習:鼓勵學生進行小組合作學習,共同探討反證法的應(yīng)用和拓展,培養(yǎng)學生的團隊合作意識和溝通能力。

(二)存在主要問題

1.課堂互動不足:在教學過程中,發(fā)現(xiàn)課堂互動不足,學生參與度不高。這可能與教學方法有關(guān),如講授法過于單一,未能充分激發(fā)學生的主動性和參與熱情。

2.作業(yè)反饋不及時:在批改作業(yè)時,發(fā)現(xiàn)部分學生的反證法應(yīng)用存在問題,但由于作業(yè)反饋不及時,未能及時發(fā)現(xiàn)和糾正學生的錯誤。

3.拓展資源利用不充分:雖然提供了拓展資源,但部分學生未能充分利用這些資源進行自主學習和探究,影響了學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論