版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
彈性力學(xué)仿真軟件:LS-DYNA:熱力學(xué)與流固耦合分析技術(shù)教程1彈性力學(xué)仿真軟件:LS-DYNA:熱力學(xué)與流固耦合分析1.1LS-DYNA軟件概述LS-DYNA是一款廣泛應(yīng)用于工程領(lǐng)域的非線性動(dòng)力學(xué)有限元分析軟件,由LivermoreSoftwareTechnologyCorporation(LSTC)開發(fā)。它特別擅長(zhǎng)處理復(fù)雜的動(dòng)力學(xué)問題,如碰撞、爆炸、高速?zèng)_擊等,同時(shí)也支持靜態(tài)分析、熱力學(xué)分析和流固耦合分析。LS-DYNA的流固耦合分析功能,能夠模擬流體與固體之間的相互作用,這對(duì)于理解多物理場(chǎng)耦合現(xiàn)象至關(guān)重要。1.1.1特點(diǎn)非線性動(dòng)力學(xué)分析:LS-DYNA能夠處理材料的非線性行為,包括塑性、蠕變、超彈性等。流固耦合分析:通過流體動(dòng)力學(xué)和結(jié)構(gòu)動(dòng)力學(xué)的耦合,模擬流體與固體的相互作用。熱力學(xué)分析:考慮溫度變化對(duì)材料性能的影響,進(jìn)行熱力學(xué)耦合分析。1.2熱力學(xué)與流固耦合分析的重要性熱力學(xué)與流固耦合分析在多個(gè)工程領(lǐng)域中具有重要應(yīng)用,如航空航天、汽車工業(yè)、能源行業(yè)等。在這些領(lǐng)域中,結(jié)構(gòu)可能同時(shí)受到流體動(dòng)力學(xué)和熱力學(xué)效應(yīng)的影響,例如,飛機(jī)在高速飛行時(shí),機(jī)翼會(huì)受到空氣動(dòng)力學(xué)載荷和氣動(dòng)加熱的影響;汽車發(fā)動(dòng)機(jī)在運(yùn)行時(shí),內(nèi)部零件會(huì)受到高溫和流體(如冷卻液)的耦合作用。因此,準(zhǔn)確模擬這些耦合效應(yīng)對(duì)于設(shè)計(jì)和優(yōu)化結(jié)構(gòu)至關(guān)重要。1.2.1應(yīng)用場(chǎng)景航空航天:模擬飛機(jī)在高速飛行時(shí)的氣動(dòng)加熱和結(jié)構(gòu)響應(yīng)。汽車工業(yè):分析發(fā)動(dòng)機(jī)內(nèi)部零件的熱應(yīng)力和流體冷卻效果。能源行業(yè):研究核反應(yīng)堆中流體與結(jié)構(gòu)的相互作用,以及高溫下的材料行為。1.2.2原理熱力學(xué)與流固耦合分析基于能量守恒和動(dòng)量守恒的原理。在流體動(dòng)力學(xué)部分,通常使用Navier-Stokes方程來(lái)描述流體的運(yùn)動(dòng);在結(jié)構(gòu)動(dòng)力學(xué)部分,使用牛頓第二定律來(lái)描述固體的運(yùn)動(dòng)。熱力學(xué)效應(yīng)則通過熱傳導(dǎo)方程來(lái)模擬,考慮材料的熱膨脹、熱應(yīng)力等現(xiàn)象。這些方程在LS-DYNA中通過有限元方法進(jìn)行離散和求解,實(shí)現(xiàn)耦合分析。1.2.3數(shù)據(jù)樣例在進(jìn)行熱力學(xué)與流固耦合分析時(shí),需要準(zhǔn)備以下數(shù)據(jù):幾何模型:包括固體和流體的幾何形狀。材料屬性:固體和流體的物理和熱力學(xué)屬性,如密度、彈性模量、熱導(dǎo)率等。邊界條件:如流體的入口速度、溫度,固體的固定邊界等。載荷條件:如流體的壓力、固體的外力等。1.2.4示例下面是一個(gè)使用LS-DYNA進(jìn)行熱力學(xué)與流固耦合分析的簡(jiǎn)化示例。假設(shè)我們有一個(gè)簡(jiǎn)單的管道模型,內(nèi)部流動(dòng)著高溫流體,管道壁由某種材料制成,需要分析流體對(duì)管道壁的熱應(yīng)力影響。*KEYWORD
*PART
*PART_ID,1
*NODE
1,0.0,0.0,0.0
2,1.0,0.0,0.0
3,1.0,1.0,0.0
4,0.0,1.0,0.0
*ELEMENT_SOLID
1,1,2,3,4
*MATERIAL_ELASTIC
1,7800.0,210000.0,0.3
*SECTION_SOLID
ALL,1,1
*BOUNDARY
1,1,0.0,0.0,0.0
2,2,0.0,0.0,0.0
3,3,0.0,0.0,0.0
4,4,0.0,0.0,0.0
*IC
1,1,0.0,0.0,0.0
2,2,0.0,0.0,0.0
3,3,0.0,0.0,0.0
4,4,0.0,0.0,0.0
*FLUID
*FLUID_ID,1
*NODE
5,0.5,0.5,0.0
*ELEMENT_FLUID
1,5
*MATERIAL_FLUID
1,1000.0,1.4
*BOUNDARY
5,5,100.0,0.0,0.0
*IC
5,5,0.0,0.0,0.0
*CONTACT
*CONTACT_PAIR
1,1,1
*CONTACT_SURFACE
1,1,2,3,4
*CONTACT_SURFACE_FLUID
1,5
*HEAT_TRANSFER
*HEAT_TRANSFER_SURFACE
1,1,2,3,4
*HEAT_TRANSFER_FLUID
1,5
*END1.2.5解釋*PART:定義固體和流體的模型。*NODE:定義節(jié)點(diǎn)坐標(biāo)。*ELEMENT_SOLID和*ELEMENT_FLUID:定義固體和流體的單元。*MATERIAL_ELASTIC和*MATERIAL_FLUID:定義材料屬性。*BOUNDARY:定義邊界條件。*IC:定義初始條件。*CONTACT和*HEAT_TRANSFER:定義流體與固體之間的接觸和熱傳遞。通過上述示例,我們可以看到LS-DYNA如何通過定義模型、材料、邊界和載荷條件,以及接觸和熱傳遞條件,來(lái)實(shí)現(xiàn)熱力學(xué)與流固耦合分析。這種分析能夠幫助工程師更準(zhǔn)確地預(yù)測(cè)結(jié)構(gòu)在復(fù)雜環(huán)境下的行為,從而優(yōu)化設(shè)計(jì),提高安全性和效率。2彈性力學(xué)仿真軟件:LS-DYNA基礎(chǔ)教程2.1軟件界面與基本操作LS-DYNA是一款廣泛應(yīng)用于非線性動(dòng)力學(xué)分析的有限元軟件,其強(qiáng)大的計(jì)算能力和豐富的單元類型使其在汽車碰撞、爆炸沖擊、材料成型等領(lǐng)域得到廣泛應(yīng)用。軟件界面主要分為前處理、求解器和后處理三大部分。2.1.1前處理前處理部分主要用于構(gòu)建模型,包括幾何建模、網(wǎng)格劃分、材料屬性定義、邊界條件設(shè)置等。LS-DYNA的前處理可以使用多種工具,如HyperMesh、Patran等,這些工具提供了直觀的圖形用戶界面,便于用戶操作。2.1.2求解器LS-DYNA的求解器是其核心部分,負(fù)責(zé)執(zhí)行有限元分析。用戶通過定義輸入文件,指定求解器的計(jì)算參數(shù)和分析類型。LS-DYNA支持多種求解算法,包括顯式動(dòng)力學(xué)、隱式動(dòng)力學(xué)、靜力學(xué)等。2.1.3后處理后處理部分用于查看和分析計(jì)算結(jié)果。LS-DYNA的后處理工具如DYNA3D、HyperView等,提供了豐富的結(jié)果可視化功能,如應(yīng)力、應(yīng)變、位移等結(jié)果的顯示和動(dòng)畫播放。2.2輸入文件與關(guān)鍵字詳解LS-DYNA的輸入文件通常以.k為擴(kuò)展名,采用關(guān)鍵字驅(qū)動(dòng)的格式。每個(gè)關(guān)鍵字對(duì)應(yīng)一個(gè)特定的輸入項(xiàng),如材料屬性、單元類型、載荷等。下面將詳細(xì)介紹幾個(gè)常用的關(guān)鍵字。2.2.1關(guān)鍵字:*KEYWORD2.2.1.1說明*KEYWORD是LS-DYNA輸入文件中的關(guān)鍵字,用于指定輸入項(xiàng)的類型和參數(shù)。關(guān)鍵字通常以*開頭,后跟關(guān)鍵字名稱,參數(shù)則在關(guān)鍵字后列出。2.2.1.2示例*NODE
1,0.0,0.0,0.0
2,1.0,0.0,0.0
3,1.0,1.0,0.0
4,0.0,1.0,0.0上述代碼定義了四個(gè)節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)有唯一的ID和三維坐標(biāo)。2.2.2關(guān)鍵字:*ELEMENT_SOLID2.2.2.1說明*ELEMENT_SOLID用于定義實(shí)體單元,如四面體或六面體單元。實(shí)體單元是LS-DYNA中用于模擬三維實(shí)體結(jié)構(gòu)的主要單元類型。2.2.2.2示例*ELEMENT_SOLID
1,1,2,3,4此代碼定義了一個(gè)四面體單元,ID為1,由四個(gè)節(jié)點(diǎn)(ID分別為1、2、3、4)組成。2.2.3關(guān)鍵字:*MATERIAL_ELASTIC2.2.3.1說明*MATERIAL_ELASTIC用于定義材料的彈性屬性,如楊氏模量和泊松比。這是LS-DYNA中最基本的材料模型之一。2.2.3.2示例*MATERIAL_ELASTIC
1,1,7800.0,210000.0,0.3此代碼定義了材料ID為1的彈性材料,材料類型為1(通常表示金屬),密度為7800kg/m^3,楊氏模量為210000MPa,泊松比為0.3。2.2.4關(guān)鍵字:*INITIAL_CONDITION2.2.4.1說明*INITIAL_CONDITION用于定義模型的初始條件,如初始速度或溫度。這對(duì)于動(dòng)力學(xué)分析尤為重要。2.2.4.2示例*INITIAL_CONDITION_VELOCITY
1,0.0,10.0,0.0此代碼為ID為1的節(jié)點(diǎn)定義了初始速度,x方向速度為0,y方向速度為10m/s,z方向速度為0。2.2.5關(guān)鍵字:*BOUNDARY2.2.5.1說明*BOUNDARY用于定義模型的邊界條件,如固定約束或周期性邊界條件。2.2.5.2示例*BOUNDARY_SPC
1,1,0,0,0此代碼為ID為1的節(jié)點(diǎn)定義了全約束邊界條件,即在x、y、z三個(gè)方向上位移均為0。2.2.6關(guān)鍵字:*LOAD2.2.6.1說明*LOAD用于定義作用在模型上的載荷,如力、壓力或溫度載荷。2.2.6.2示例*LOAD_NODE_NODE
1,1,1,0,0,-1000.0此代碼定義了一個(gè)作用在ID為1的節(jié)點(diǎn)上的集中力載荷,力的方向?yàn)樨?fù)z方向,力的大小為1000N。2.2.7關(guān)鍵字:*OUTPUT2.2.7.1說明*OUTPUT用于定義輸出控制,如輸出頻率和輸出類型。2.2.7.2示例*OUTPUT_REQUEST_NODE
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
#熱力學(xué)分析
##熱力學(xué)基本原理
熱力學(xué)是研究能量轉(zhuǎn)換和物質(zhì)狀態(tài)變化的科學(xué),主要關(guān)注熱能、功和物質(zhì)之間的相互關(guān)系。在熱力學(xué)分析中,我們通常使用四個(gè)基本定律來(lái)描述系統(tǒng)的熱力學(xué)行為:
1.**零定律**:如果兩個(gè)熱力學(xué)系統(tǒng)分別與第三個(gè)系統(tǒng)處于熱平衡,則這兩個(gè)系統(tǒng)彼此也處于熱平衡。
2.**第一定律**:能量守恒定律,系統(tǒng)內(nèi)能量的增加等于輸入系統(tǒng)的能量減去從系統(tǒng)輸出的能量。
3.**第二定律**:熵增原理,孤立系統(tǒng)中的熵不會(huì)減少,總是傾向于增加,直到達(dá)到最大值。
4.**第三定律**:在絕對(duì)零度時(shí),任何完美晶體的熵為零。
在LS-DYNA中,熱力學(xué)分析通常涉及溫度變化對(duì)材料性能的影響,以及熱能的傳遞過程。
##溫度場(chǎng)與熱應(yīng)力模擬
在熱力學(xué)分析中,溫度場(chǎng)的模擬是關(guān)鍵。溫度的變化會(huì)影響材料的熱膨脹系數(shù)、熱導(dǎo)率等屬性,從而導(dǎo)致熱應(yīng)力的產(chǎn)生。熱應(yīng)力是由于溫度變化引起的材料內(nèi)部應(yīng)力,這種應(yīng)力在結(jié)構(gòu)設(shè)計(jì)和材料工程中必須被考慮。
###示例:溫度場(chǎng)模擬
假設(shè)我們有一個(gè)簡(jiǎn)單的二維金屬板,需要模擬在加熱過程中的溫度分布。我們可以使用LS-DYNA的熱傳導(dǎo)分析功能來(lái)實(shí)現(xiàn)這一目標(biāo)。
```lsdyna
*HEADING
*KEYWORD
*PARAMETER
T0=300,T1=500
*PART,PART=1,MAT=1
*NODE
1,0,0
2,1,0
3,1,1
4,0,1
*ELEMENT_SOLID,TYPE=C3D4,ELSET=elset1
1,1,2,3,4
*MAT_ELASTIC
1,1.0e11,0.3,0.0
*INITIAL_TEMPERATURE
1,T0
2,T0
3,T0
4,T0
*BOUNDARY
1,1,0
4,1,0
*HEAT_FLUX
2,0,0,1000
*STEP,DTMAX=0.01
*ELTEMP,ELSET=elset1
*END在這個(gè)例子中,我們定義了一個(gè)四節(jié)點(diǎn)的四面體單元,初始溫度為300K,邊界條件固定了兩個(gè)節(jié)點(diǎn)的位移,同時(shí)在節(jié)點(diǎn)2上施加了1000W/m^2的熱流。通過*ELTEMP命令,我們可以輸出每個(gè)時(shí)間步的溫度分布。2.2.8示例:熱應(yīng)力計(jì)算熱應(yīng)力的計(jì)算需要考慮材料的熱膨脹和彈性性質(zhì)。在LS-DYNA中,我們可以使用溫度依賴的材料模型來(lái)模擬這一過程。*HEADING
*KEYWORD
*PARAMETER
T0=300,T1=500
*PART,PART=1,MAT=1
*NODE
1,0,0
2,1,0
3,1,1
4,0,1
*ELEMENT_SOLID,TYPE=C3D4,ELSET=elset1
1,1,2,3,4
*MAT_ELASTIC
1,1.0e11,0.3,0.0
*MAT_ELASTIC,TEMP=500
1,1.05e11,0.3,0.0
*INITIAL_TEMPERATURE
1,T0
2,T0
3,T0
4,T0
*BOUNDARY
1,1,0
4,1,0
*HEAT_FLUX
2,0,0,1000
*STEP,DTMAX=0.01
*ELTEMP,ELSET=elset1
*ELSTRESS,ELSET=elset1
*END在這個(gè)例子中,我們定義了溫度依賴的彈性模量,當(dāng)溫度從300K升高到500K時(shí),彈性模量從1.0e11Pa增加到1.05e11Pa。通過*ELSTRESS命令,我們可以輸出每個(gè)時(shí)間步的應(yīng)力分布。2.3熱傳導(dǎo)與對(duì)流邊界條件設(shè)置熱傳導(dǎo)和對(duì)流是熱能傳遞的兩種主要方式。熱傳導(dǎo)是通過物質(zhì)內(nèi)部的粒子相互作用來(lái)傳遞熱能,而對(duì)流則是通過流體的宏觀運(yùn)動(dòng)來(lái)傳遞熱能。2.3.1示例:熱傳導(dǎo)邊界條件在LS-DYNA中,熱傳導(dǎo)邊界條件可以通過*HEAT_FLUX或*HEAT_FLUX_THERMAL命令來(lái)設(shè)置。前者用于定義恒定的熱流密度,后者用于定義溫度依賴的熱流密度。*HEADING
*KEYWORD
*PARAMETER
T0=300,T1=500
*PART,PART=1,MAT=1
*NODE
1,0,0
2,1,0
3,1,1
4,0,1
*ELEMENT_SOLID,TYPE=C3D4,ELSET=elset1
1,1,2,3,4
*MAT_ELASTIC
1,1.0e11,0.3,0.0
*INITIAL_TEMPERATURE
1,T0
2,T0
3,T0
4,T0
*BOUNDARY
1,1,0
4,1,0
*HEAT_FLUX
2,0,0,1000
*STEP,DTMAX=0.01
*ELTEMP,ELSET=elset1
*END在這個(gè)例子中,我們通過*HEAT_FLUX命令在節(jié)點(diǎn)2上施加了1000W/m^2的熱流密度。2.3.2示例:對(duì)流邊界條件對(duì)流邊界條件可以通過*CONVECTION命令來(lái)設(shè)置。這個(gè)命令允許我們定義對(duì)流換熱系數(shù)和環(huán)境溫度,從而模擬對(duì)流換熱過程。*HEADING
*KEYWORD
*PARAMETER
T0=300,T1=500
*PART,PART=1,MAT=1
*NODE
1,0,0
2,1,0
3,1,1
4,0,1
*ELEMENT_SOLID,TYPE=C3D4,ELSET=elset1
1,1,2,3,4
*MAT_ELASTIC
1,1.0e11,0.3,0.0
*INITIAL_TEMPERATURE
1,T0
2,T0
3,T0
4,T0
*BOUNDARY
1,1,0
4,1,0
*HEAT_FLUX
2,0,0,1000
*CONVECTION,SIDE=1,H=10,TAMB=300
*STEP,DTMAX=0.01
*ELTEMP,ELSET=elset1
*END在這個(gè)例子中,我們通過*CONVECTION命令在結(jié)構(gòu)的一側(cè)設(shè)置了對(duì)流換熱系數(shù)為10W/m^2K和環(huán)境溫度為300K的對(duì)流邊界條件。通過這些示例,我們可以看到LS-DYNA在熱力學(xué)分析中的強(qiáng)大功能,它能夠模擬復(fù)雜的溫度場(chǎng)變化和熱應(yīng)力計(jì)算,以及處理熱傳導(dǎo)和對(duì)流邊界條件。這對(duì)于理解和優(yōu)化熱力學(xué)系統(tǒng)的行為至關(guān)重要。3流體動(dòng)力學(xué)分析3.1流體動(dòng)力學(xué)基礎(chǔ)流體動(dòng)力學(xué)是研究流體(液體和氣體)在靜止和運(yùn)動(dòng)狀態(tài)下的力學(xué)性質(zhì)的學(xué)科。在LS-DYNA中,流體動(dòng)力學(xué)分析主要用于模擬流體在復(fù)雜幾何結(jié)構(gòu)中的行為,包括流體的流動(dòng)、壓力分布、溫度變化等。流體動(dòng)力學(xué)的基礎(chǔ)包括連續(xù)性方程、動(dòng)量方程和能量方程,這些方程描述了流體的質(zhì)量、動(dòng)量和能量守恒。3.1.1連續(xù)性方程連續(xù)性方程描述了流體質(zhì)量的守恒,即在任意封閉體積內(nèi),流體的質(zhì)量不會(huì)隨時(shí)間變化。數(shù)學(xué)表達(dá)式為:?其中,ρ是流體的密度,v是流體的速度矢量,t是時(shí)間。3.1.2動(dòng)量方程動(dòng)量方程描述了流體動(dòng)量的守恒,即流體受到的外力等于流體動(dòng)量的變化率。數(shù)學(xué)表達(dá)式為:?其中,p是流體的壓力,τ是應(yīng)力張量,g是重力加速度。3.1.3能量方程能量方程描述了流體能量的守恒,包括內(nèi)能和動(dòng)能。數(shù)學(xué)表達(dá)式為:?其中,E是流體的總能量,q是熱傳導(dǎo)矢量。3.2流體網(wǎng)格生成在進(jìn)行流體動(dòng)力學(xué)分析前,需要生成流體的網(wǎng)格模型。LS-DYNA支持多種網(wǎng)格生成技術(shù),包括結(jié)構(gòu)化網(wǎng)格、非結(jié)構(gòu)化網(wǎng)格和自適應(yīng)網(wǎng)格。3.2.1結(jié)構(gòu)化網(wǎng)格結(jié)構(gòu)化網(wǎng)格通常用于形狀規(guī)則的流體區(qū)域,網(wǎng)格單元排列有序,易于處理。例如,對(duì)于一個(gè)長(zhǎng)方體流體區(qū)域,可以使用結(jié)構(gòu)化網(wǎng)格生成技術(shù)。3.2.2非結(jié)構(gòu)化網(wǎng)格非結(jié)構(gòu)化網(wǎng)格適用于形狀復(fù)雜的流體區(qū)域,網(wǎng)格單元的排列沒有固定規(guī)律,但可以更好地適應(yīng)復(fù)雜幾何。例如,對(duì)于一個(gè)具有復(fù)雜內(nèi)部結(jié)構(gòu)的流體區(qū)域,可以使用非結(jié)構(gòu)化網(wǎng)格生成技術(shù)。3.2.3自適應(yīng)網(wǎng)格自適應(yīng)網(wǎng)格技術(shù)可以根據(jù)流體動(dòng)力學(xué)分析的需要?jiǎng)討B(tài)調(diào)整網(wǎng)格的密度,以提高計(jì)算效率和精度。例如,在流體流動(dòng)的高梯度區(qū)域,自適應(yīng)網(wǎng)格會(huì)自動(dòng)增加網(wǎng)格密度。3.3流體動(dòng)力學(xué)方程求解LS-DYNA使用有限元方法求解流體動(dòng)力學(xué)方程。有限元方法將流體區(qū)域離散為多個(gè)小的網(wǎng)格單元,然后在每個(gè)單元上求解方程,最后將所有單元的結(jié)果組合起來(lái)得到整個(gè)流體區(qū)域的解。3.3.1有限元方法求解流程離散化:將流體區(qū)域離散為多個(gè)網(wǎng)格單元。方程組建立:在每個(gè)網(wǎng)格單元上建立流體動(dòng)力學(xué)方程的離散形式。求解:使用數(shù)值方法求解方程組,得到每個(gè)網(wǎng)格單元的解。后處理:將所有網(wǎng)格單元的結(jié)果組合起來(lái),生成流體動(dòng)力學(xué)分析的可視化結(jié)果。3.3.2示例代碼以下是一個(gè)使用Python和OpenFOAM進(jìn)行流體動(dòng)力學(xué)分析的簡(jiǎn)單示例。OpenFOAM是一個(gè)開源的流體動(dòng)力學(xué)仿真軟件,可以與LS-DYNA結(jié)合使用進(jìn)行更復(fù)雜的流固耦合分析。#導(dǎo)入必要的庫(kù)
importnumpyasnp
importmatplotlib.pyplotasplt
fromopenfoamimportOpenFOAM
#定義流體區(qū)域的幾何參數(shù)
length=1.0
height=0.5
nx=100
ny=50
#生成流體網(wǎng)格
x=np.linspace(0,length,nx)
y=np.linspace(0,height,ny)
X,Y=np.meshgrid(x,y)
mesh=np.column_stack((X.ravel(),Y.ravel()))
#初始化OpenFOAM對(duì)象
foam=OpenFOAM()
#設(shè)置流體動(dòng)力學(xué)分析的參數(shù)
foam.set_parameters(rho=1.0,mu=0.01,U=np.zeros((nx*ny,2)),p=np.zeros(nx*ny))
#求解流體動(dòng)力學(xué)方程
foam.solve()
#可視化結(jié)果
plt.figure()
plt.contourf(X,Y,foam.U.reshape(nx,ny)[:,0])
plt.colorbar()
plt.title('流體速度分布')
plt.xlabel('x')
plt.ylabel('y')
plt.show()3.3.3代碼解釋導(dǎo)入庫(kù):導(dǎo)入了numpy和matplotlib庫(kù)用于數(shù)據(jù)處理和可視化,以及openfoam庫(kù)用于流體動(dòng)力學(xué)分析。定義幾何參數(shù):定義了流體區(qū)域的長(zhǎng)度、高度和網(wǎng)格單元的數(shù)量。生成流體網(wǎng)格:使用numpy的meshgrid函數(shù)生成了流體區(qū)域的網(wǎng)格。初始化OpenFOAM對(duì)象:創(chuàng)建了一個(gè)OpenFOAM對(duì)象。設(shè)置參數(shù):設(shè)置了流體的密度、粘度、初始速度和壓力。求解方程:調(diào)用了OpenFOAM對(duì)象的solve方法求解流體動(dòng)力學(xué)方程。可視化結(jié)果:使用matplotlib庫(kù)生成了流體速度分布的等值線圖。通過以上步驟,可以使用LS-DYNA和OpenFOAM進(jìn)行流體動(dòng)力學(xué)分析,得到流體的速度、壓力和溫度分布等結(jié)果。4流固耦合分析4.1流固耦合原理流固耦合分析是研究流體與固體相互作用的一種方法,主要應(yīng)用于流體動(dòng)力學(xué)和結(jié)構(gòu)力學(xué)的交叉領(lǐng)域。在LS-DYNA軟件中,流固耦合分析通過求解流體和固體的運(yùn)動(dòng)方程,考慮兩者之間的相互作用力,實(shí)現(xiàn)對(duì)復(fù)雜物理現(xiàn)象的仿真。流體和固體之間的耦合主要通過界面?zhèn)鬟f壓力、位移、速度等信息,確保流體和固體在接觸面上的連續(xù)性和平衡性。4.1.1流體動(dòng)力學(xué)方程流體動(dòng)力學(xué)方程主要包括連續(xù)性方程、動(dòng)量方程和能量方程。以二維不可壓縮流體為例,連續(xù)性方程和動(dòng)量方程可以表示為:???其中,u和v分別是流體在x和y方向的速度分量,p是壓力,ρ是流體密度,ν是動(dòng)力粘度。4.1.2結(jié)構(gòu)動(dòng)力學(xué)方程結(jié)構(gòu)動(dòng)力學(xué)方程描述了固體的運(yùn)動(dòng),通常表示為:M其中,M是質(zhì)量矩陣,C是阻尼矩陣,K是剛度矩陣,u和u分別是位移的二階和一階導(dǎo)數(shù),u是位移向量,F(xiàn)是外力向量。4.1.3耦合條件流固耦合分析的關(guān)鍵在于耦合條件的設(shè)置,確保流體和固體在接觸面上的力和位移連續(xù)。耦合條件通常包括:壓力連續(xù)性:流體壓力等于固體表面壓力。速度連續(xù)性:流體速度等于固體表面速度。位移連續(xù)性:流體位移等于固體表面位移。4.2耦合接口設(shè)置在LS-DYNA中,流固耦合接口的設(shè)置主要通過關(guān)鍵字卡和接觸卡實(shí)現(xiàn)。關(guān)鍵字卡用于定義流體和固體的材料屬性、網(wǎng)格信息等,而接觸卡用于定義流體和固體之間的接觸關(guān)系。4.2.1關(guān)鍵字卡示例*KEYWORD
*PART,ID=1,TYPE=FLUID
*SECTION_SOLID,ELSET=ELSET1,MATERIAL=1
*FLUID_MATERIAL,ID=1,DENSITY=1000.0,VISCOSITY=0.001
*INITIAL_CONDITION,TYPE=VELOCITY,PART=1
1.0,0.0,0.0
*PART,ID=2,TYPE=SOLID
*SECTION_SOLID,ELSET=ELSET2,MATERIAL=2
*SOLID_MATERIAL,ID=2,DENSITY=7800.0,ELASTIC
210000.0,0.34.2.2接觸卡示例*CONTACT_SURFACE,TYPE=FLUID,ID=100
*CONTACT_SURFACE,TYPE=SOLID,ID=101
*CONTACT,SURF1=100,SURF2=101,TYPE=FLUID_SOLID4.3流固耦合案例分析4.3.1案例描述假設(shè)有一個(gè)水箱,內(nèi)部充滿水,水箱的一側(cè)壁受到外部沖擊力的作用。此案例旨在分析沖擊力對(duì)水箱內(nèi)水體的影響,以及水體對(duì)水箱壁的反作用力。4.3.2模型設(shè)置流體模型:使用四面體網(wǎng)格對(duì)水體進(jìn)行離散,定義流體材料屬性。固體模型:使用六面體網(wǎng)格對(duì)水箱壁進(jìn)行離散,定義固體材料屬性。耦合接口:定義水箱壁和水體之間的接觸關(guān)系,確保壓力、速度和位移的連續(xù)性。4.3.3數(shù)據(jù)樣例*KEYWORD
*PART,ID=1,TYPE=FLUID
*SECTION_SOLID,ELSET=ELSET1,MATERIAL=1
*FLUID_MATERIAL,ID=1,DENSITY=1000.0,VISCOSITY=0.001
*INITIAL_CONDITION,TYPE=VELOCITY,PART=1
0.0,0.0,0.0
*PART,ID=2,TYPE=SOLID
*SECTION_SOLID,ELSET=ELSET2,MATERIAL=2
*SOLID_MATERIAL,ID=2,DENSITY=7800.0,ELASTIC
210000.0,0.3
*CONTACT_SURFACE,TYPE=FLUID,ID=100
*CONTACT_SURFACE,TYPE=SOLID,ID=101
*CONTACT,SURF1=100,SURF2=101,TYPE=FLUID_SOLID
*LOAD,TYPE=IMPULSE,PART=2
10000.0,0.0,0.0,0.0,0.001,0.04.3.4結(jié)果分析通過LS-DYNA的流固耦合分析,可以得到水箱壁的變形情況、水體的流動(dòng)狀態(tài)以及兩者之間的相互作用力。這些結(jié)果對(duì)于理解流體沖擊對(duì)結(jié)構(gòu)的影響、優(yōu)化結(jié)構(gòu)設(shè)計(jì)以及預(yù)測(cè)流體流動(dòng)行為具有重要意義。以上內(nèi)容詳細(xì)介紹了流固耦合分析的原理、接口設(shè)置方法以及一個(gè)具體的案例分析過程,旨在幫助用戶更好地理解和應(yīng)用LS-DYNA軟件進(jìn)行流固耦合仿真。5高級(jí)功能與技巧5.1材料模型與本構(gòu)關(guān)系在LS-DYNA中,材料模型是模擬材料行為的關(guān)鍵。本構(gòu)關(guān)系描述了材料的應(yīng)力應(yīng)變關(guān)系,是材料模型的核心。LS-DYNA提供了多種材料模型,包括但不限于線彈性、彈塑性、粘彈性、超彈性、損傷模型等,以適應(yīng)不同材料在不同條件下的行為。5.1.1示例:彈塑性材料模型LS-DYNA中常用的彈塑性材料模型是MAT_001。下面是一個(gè)使用MAT_001的示例:*DEFINE_MATERIAL_MODEL
*ELASTIC
1,1,7800,210000,0.3
*PLASTIC
1,1,200,0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01*DEFINE_MATERIAL_MODEL:定義材料模型。*ELASTIC:定義彈性部分,材料ID為1,密度為7800kg/m3,楊氏模量為210000MPa,泊松比為0.3。*PLASTIC:定義塑性部分,材料ID為1,屈服強(qiáng)度為200MPa,塑性應(yīng)變分別為0.001至0.01,對(duì)應(yīng)的塑性應(yīng)力也需定義。5.2接觸算法與摩擦設(shè)置接觸算法在LS-DYNA中用于模擬不同物體之間的接觸和碰撞。摩擦設(shè)置則決定了接觸面之間的摩擦行為,對(duì)模擬結(jié)果有重要影響。5.2.1示例:自動(dòng)接觸對(duì)LS-DYNA中的自動(dòng)接觸對(duì)設(shè)置可以簡(jiǎn)化接觸定義,適用于復(fù)雜模型。下面是一個(gè)使用自動(dòng)接觸對(duì)的示例:*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE
1,1,1,1,0.3,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.00
#實(shí)踐案例
##熱沖擊仿真
熱沖擊仿真在LS-DYNA中是一個(gè)關(guān)鍵的應(yīng)用領(lǐng)域,它涉及到材料在極端溫度變化下的響應(yīng)。這種仿真對(duì)于理解熱防護(hù)系統(tǒng)、熱處理過程、以及在高溫或快速溫度變化環(huán)境中工作的結(jié)構(gòu)的性能至關(guān)重要。
###原理
熱沖擊仿真基于熱傳導(dǎo)方程和材料的熱物理性質(zhì)。在LS-DYNA中,可以使用顯式時(shí)間積分方法來(lái)解決瞬態(tài)熱傳導(dǎo)問題,這允許軟件模擬快速的溫度變化和由此產(chǎn)生的熱應(yīng)力。
###內(nèi)容
1.**定義材料屬性**:包括熱導(dǎo)率、比熱容、密度和熱膨脹系數(shù)。
2.**設(shè)置初始和邊界條件**:如初始溫度分布和熱源的位置。
3.**使用接觸算法**:模擬熱源與結(jié)構(gòu)之間的熱接觸。
4.**后處理**:分析溫度分布、熱應(yīng)力和結(jié)構(gòu)變形。
###示例
假設(shè)我們有一個(gè)金屬板,初始溫度為300K,突然受到高溫?zé)嵩吹臎_擊,熱源溫度為1000K。我們將使用LS-DYNA進(jìn)行仿真。
```lsdyna
*KEYWORD
*PARAM
TSTEP,1E-6
*PART,PART_ID=1
*SECTION_SOLID
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
*MAT_ELASTIC
1,7800,210E3,0.3
*INITIAL_TEMPERATURE
1,300
*BOUNDARY
1,1,1,0.
*BOUNDARY_SPC_TEMP
1,1,1,1000
*END在這個(gè)示例中,我們定義了一個(gè)金屬材料(彈性材料模型),設(shè)置了初始溫度為300K,并在金屬板的一側(cè)施加了1000K的熱邊界條件。時(shí)間步長(zhǎng)設(shè)置為1E-6秒,以確保捕捉到快速的溫度變化。5.3流體結(jié)構(gòu)交互作用仿真流體結(jié)構(gòu)交互作用(FSI)仿真在LS-DYNA中用于分析流體和固體結(jié)構(gòu)之間的相互作用。這種仿真對(duì)于理解水下爆炸、風(fēng)力對(duì)結(jié)構(gòu)的影響、以及流體動(dòng)力學(xué)問題至關(guān)重要。5.3.1原理FSI仿真基于流體動(dòng)力學(xué)方程(如Navier-Stokes方程)和結(jié)構(gòu)動(dòng)力學(xué)方程的耦合。LS-DYNA使用ALE(ArbitraryLagrangian-Eulerian)方法來(lái)處理流體和結(jié)構(gòu)的動(dòng)態(tài)耦合。5.3.2內(nèi)容定義流體和結(jié)構(gòu)材料屬性。設(shè)置流體和結(jié)構(gòu)的網(wǎng)格。定義流體-結(jié)構(gòu)界面。施加流體動(dòng)力學(xué)邊界條件。分析流體壓力和結(jié)構(gòu)響應(yīng)。5.3.3示例假設(shè)我們有一個(gè)水下結(jié)構(gòu),受到水下爆炸的沖擊。我們將使用LS-DYNA進(jìn)行FSI仿真。*KEYWORD
*PARAM
TSTEP,1E-6
*PART,PART_ID=1
*SECTION_SOLID
*MAT_ELASTIC
1,7800,210E3,0.3
*PART,PART_ID=2
*SECTION_FLUID
*MAT_WATER
2,1000,2.2E9
*CONTACT_SURFACE_STRUCTURE
1,1,1
*CONTACT_SURFACE_FLUID
2,2,2
*CONTACT_PAIR
1,2
*BOUNDARY_SPC
1,1,1,0.
*BOUNDARY_SPC
2,2,2,0.
*BOUNDARY_SPC
2,3,3,0.
*BOUNDARY_SPC
2,4,4,0.
*BOUNDARY_SPC
2,5,5,0.
*BOUNDARY_SPC
2,6,6,0.
*END在這個(gè)示例中,我們定義了一個(gè)固體結(jié)構(gòu)和一個(gè)水體,使用接觸對(duì)來(lái)模擬它們之間的交互作用。固體結(jié)構(gòu)的材料屬性被定義為彈性材料,而水體的材料屬性被定義為水。我們還設(shè)置了流體和結(jié)構(gòu)的邊界條件,以模擬封閉環(huán)境。5.4多物理場(chǎng)耦合仿真示例多物理場(chǎng)耦合仿真在LS-DYNA中用于分析同時(shí)涉及熱、流體和結(jié)構(gòu)的復(fù)雜問題。這種仿真對(duì)于理解熱流體動(dòng)力學(xué)效應(yīng)、熱機(jī)械耦合等現(xiàn)象非常重要。5.4.1原理多物理場(chǎng)耦合仿真基于將不同物理場(chǎng)的方程耦合在一起,形成一個(gè)統(tǒng)一的系統(tǒng)。LS-DYNA通過使用耦合算法和數(shù)據(jù)交換技術(shù)來(lái)實(shí)現(xiàn)這一點(diǎn)。5.4.2內(nèi)容定義所有涉及的物理場(chǎng)材料屬性。設(shè)置網(wǎng)格和耦合界面。施加多物理場(chǎng)邊界條件。分析耦合效應(yīng)。5.4.3示例假設(shè)我們有一個(gè)熱交換器,內(nèi)部有流體流動(dòng),外部受到熱沖擊。我們將使用LS-DYNA進(jìn)行多物理場(chǎng)耦合仿真。*KEYWORD
*PARAM
TSTEP,1E-6
*PART,PART_ID=1
*SECTION_SOLID
*MAT_ELASTIC
1,7800,210E3,0.3
*PART,PART_ID=2
*SECTION_FLUID
*MAT_WATER
2,1000,2.2E9
*CONTACT_SURFACE_STRUCTURE
1,1,1
*CONTACT_SURFACE_FLUID
2,2,2
*CONTACT_PAIR
1,2
*INITIAL_TEMPERATURE
1,300
*BOUNDARY_SPC
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《網(wǎng)店色彩設(shè)計(jì)》課件
- 《神經(jīng)癥年制》課件
- 《證券上市》課件
- 2024年農(nóng)業(yè)部門抗旱工作總結(jié)范文
- 2025年高考數(shù)學(xué)一輪復(fù)習(xí)之冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)
- 單位管理制度匯編大全人力資源管理
- 單位管理制度合并匯編【人事管理】
- 單位管理制度分享合集人員管理十篇
- 單位管理制度范例匯編人事管理
- 單位管理制度呈現(xiàn)大全人事管理十篇
- 2024年中國(guó)輔酶Q10膠囊行業(yè)投資分析、市場(chǎng)運(yùn)行態(tài)勢(shì)、未來(lái)前景預(yù)測(cè)報(bào)告
- FANUC機(jī)器人培訓(xùn)教程(完成版)
- 玉溪大紅山鐵礦二期北采區(qū)采礦施工組織設(shè)計(jì)
- 中醫(yī)診療技術(shù)操作規(guī)程
- 2024年《多媒體技術(shù)與應(yīng)用》 考試題庫(kù)及答案
- 2024年外研版九年級(jí)英語(yǔ)上冊(cè)知識(shí)點(diǎn)總結(jié)
- 2024新教科版四年級(jí)上冊(cè)科學(xué)知識(shí)點(diǎn)總結(jié)精簡(jiǎn)版
- (完整)北京版小學(xué)英語(yǔ)1至6年級(jí)詞匯(帶音標(biāo))
- 《朝花夕拾》閱讀推進(jìn)課 教學(xué)設(shè)計(jì)-2023-2024學(xué)年統(tǒng)編版語(yǔ)文七年級(jí)下冊(cè)
- 項(xiàng)目駐場(chǎng)服務(wù)合同協(xié)議書
- 終止合同告知函 委婉
評(píng)論
0/150
提交評(píng)論