




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第42講等比數(shù)列1、等比數(shù)列的定義一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母表示.2、等比數(shù)列的通項(xiàng)公式一般地,對于等比數(shù)列{an}的第n項(xiàng)an,有公式1,這就是等比數(shù)列{an}的通項(xiàng)公式,其中a1為首項(xiàng),q為公比.第二通項(xiàng)公式為:m.3、等比數(shù)列的前n項(xiàng)和公式等比數(shù)列{an}的前n項(xiàng)和公式:Sn=(q≠1)或Sn=(q≠1).注意:(1)當(dāng)q=1時(shí),該數(shù)列是各項(xiàng)不為零的常數(shù)列,Sn=1;(2)有關(guān)等比數(shù)列的求和問題,當(dāng)q不能確定時(shí),應(yīng)分q=1,q≠1來討論.4、等比數(shù)列的性質(zhì)(1)若a,G,b成等比數(shù)列,則稱G為a和b的等比中項(xiàng),則b.(2)等比數(shù)列{an}中,若m+n=k+l(m,n,k,l∈N*),則有,特別地,當(dāng)m+n=2p時(shí),(3)設(shè)Sm是等比數(shù)列{an}的前n項(xiàng)和,則Sm,S2m-Sm,S3m-S2m滿足關(guān)系式.(4)等比數(shù)列的單調(diào)性,若首項(xiàng)a1>0,公比q>1或首項(xiàng)a1<0,公比0<q<1,則數(shù)列為遞增數(shù)列;若首項(xiàng)a1>0,公比0<q<1或首項(xiàng)a1<0,公比q>1,則數(shù)列為遞減數(shù)列;若公比q=1,則數(shù)列為常數(shù)列;公比q<0,則數(shù)列為擺動(dòng)數(shù)列.(5)若{an}和{bn}均為等比數(shù)列,則{λan}(λ≠0)、{|an|}、eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))、{aeq\o\al(2,n)}、eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,bn)))、{manbn}(m≠0)仍為等比數(shù)列.1、(2022?乙卷(文))已知等比數(shù)列的前3項(xiàng)和為168,,則A.14 B.12 C.6 D.32、(2021?甲卷(文))記為等比數(shù)列的前項(xiàng)和.若,,則A.7 B.8 C.9 D.103、(2023?甲卷(文))記為等比數(shù)列的前項(xiàng)和.若,則的公比為.4、(2021?上海)已知為無窮等比數(shù)列,,的各項(xiàng)和為9,,則數(shù)列的各項(xiàng)和為.5、(2023?乙卷(理))已知為等比數(shù)列,,,則.6、(2021?甲卷(理))等比數(shù)列的公比為,前項(xiàng)和為.設(shè)甲:,乙:是遞增數(shù)列,則A.甲是乙的充分條件但不是必要條件 B.甲是乙的必要條件但不是充分條件 C.甲是乙的充要條件 D.甲既不是乙的充分條件也不是乙的必要條件7、(2023?天津)已知為等比數(shù)列,為數(shù)列的前項(xiàng)和,,則的值為A.3 B.18 C.54 D.1528、(2023?甲卷(理))已知等比數(shù)列中,,為前項(xiàng)和,,則A.7 B.9 C.15 D.309、(2022?上海)已知等比數(shù)列的前項(xiàng)和為,前項(xiàng)積為,則下列選項(xiàng)判斷正確的是A.若,則數(shù)列是遞增數(shù)列 B.若,則數(shù)列是遞增數(shù)列 C.若數(shù)列是遞增數(shù)列,則 D.若數(shù)列是遞增數(shù)列,則10、(2023?新高考Ⅱ)記為等比數(shù)列的前項(xiàng)和,若,,則A.120 B.85 C. D.1、若等比數(shù)列{an}的各項(xiàng)均為正數(shù),a2=3,4aeq\o\al(2,3)=a1a7,則a5等于()A.eq\f(3,4)B.eq\f(3,8)C.12D.242、等比數(shù)列{an}的前n項(xiàng)和為Sn=32n-1+r,則r的值為()A.eq\f(1,3)B.-eq\f(1,3)C.eq\f(1,9)D.-eq\f(1,9)3、已知遞增的等比數(shù)列{an}中,a2=6,a1+1,a2+2,a3成等差數(shù)列,則該數(shù)列的前6項(xiàng)和S6等于()A.93B.189C.eq\f(189,16)D.3784、(2022年廣州附屬中學(xué)高三模擬試卷)已知等比數(shù)列的前n項(xiàng)和為,若,,則______.5、(2023·云南紅河·統(tǒng)考一模)在數(shù)列中,,,若為等比數(shù)列,則____________.考向一等比數(shù)列的基本運(yùn)算例1、(1)設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=3,S4=15,則公比q等于()A.5B.4C.3D.2(2)已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前4項(xiàng)和為15,且a5=3a3+4a1,則a3等于()A.16B.8C.4D.2(3)(2021·吉林延邊朝鮮族自治州·高三月考(文))已知各項(xiàng)均為正數(shù)且單調(diào)遞減的等比數(shù)列滿足、、成等差數(shù)列.其前項(xiàng)和為,且,則()A. B. C. D.方法總結(jié):(1)等比數(shù)列基本量的運(yùn)算是等比數(shù)列中的一類基本問題,等比數(shù)列中有五個(gè)量a1,n,q,an,Sn,一般可以“知三求二”,通過列方程(組)便可迎刃而解;(2)等比數(shù)列的前n項(xiàng)和公式涉及對公比q的分類討論,當(dāng)q=1時(shí),{an}的前n項(xiàng)和Sn=na1;當(dāng)q≠1時(shí),{an}的前n項(xiàng)和Sn=eq\f(a11-qn,1-q)=eq\f(a1-anq,1-q)??枷蚨缺葦?shù)列的性質(zhì)例2、(1)已知等比數(shù)列{an}的各項(xiàng)為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=()A.12 B.10C.8 D.2+log35(2)設(shè)等比數(shù)列{an}中,前n項(xiàng)和為Sn,已知S3=8,S6=7,則a7+a8+a9等于()A.eq\f(1,8) B.-eq\f(1,8)C.eq\f(57,8) D.eq\f(55,8)(3)已知等比數(shù)列{an}共有2n項(xiàng),其和為-240,且奇數(shù)項(xiàng)的和比偶數(shù)項(xiàng)的和大80,則公比q=________.變式1、(1)在等比數(shù)列{an}中,若a1a2a3a4=1,a13a14a15a16=8,則a41a42a43a44=________;(2)已知數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,n∈N*,若a1+a2+a3=3,a4+a5+a6=6,則S12=________;(3)已知{an}是等比數(shù)列,a2=2,a5=eq\f(1,4),則a1a2+a2a3+…+anan+1=________.方法總結(jié):(1)在解決等比數(shù)列的有關(guān)問題時(shí),要注意挖掘隱含條件,利用性質(zhì),特別是性質(zhì)“若m+n=p+q(m,n,p,q∈N*),則am·an=ap·aq”,可以減少運(yùn)算量,提高解題速度.(2)在應(yīng)用相應(yīng)性質(zhì)解題時(shí),要注意性質(zhì)成立的前提條件,有時(shí)需要進(jìn)行適當(dāng)變形.此外,解題時(shí)注意設(shè)而不求思想的運(yùn)用考向三等比數(shù)列的判定與證明例3、(1)設(shè)等比數(shù)列{an}的公比為q,則下列結(jié)論正確的是()A.?dāng)?shù)列{anan+1}是公比為q的等比數(shù)列B.?dāng)?shù)列{an+an+1}是公比為q的等比數(shù)列C.?dāng)?shù)列{an-an+1}是公比為q的等比數(shù)列D.?dāng)?shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是公比為eq\f(1,q)的等比數(shù)列(2)(2023·安徽蚌埠·統(tǒng)考三模)(多選)已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)積為,則下列結(jié)論正確的是(
)A.?dāng)?shù)列是等差數(shù)列 B.?dāng)?shù)列是等差數(shù)列C.?dāng)?shù)列是等比數(shù)列 D.?dāng)?shù)列是等差數(shù)列變式1、(1)已知數(shù)列{an}的前n項(xiàng)和為Sn,且an+Sn=n.若數(shù)列{bn}滿足b1=a1,bn=an-an-1(n≥2),求證:數(shù)列{bn}是等比數(shù)列;(2)已知數(shù)列{an}滿足a1=1,a2=2,an+2=eq\f(an+an+1,2),n∈N*.①令bn=an+1-an,求證:{bn}是等比數(shù)列;②求數(shù)列{an}的通項(xiàng)公式.變式2、(2022年河北省高三大聯(lián)考模擬試卷)已知數(shù)列,滿足,,且,(1)求,的值,并證明數(shù)列是等比數(shù)列;(2)求數(shù)列,的通項(xiàng)公式.方法總結(jié):證明一個(gè)數(shù)列為等差數(shù)列或者等比數(shù)列常用定義法與等差、等比中項(xiàng)法,其他方法只用于選擇、填空題中的判定;若證明某數(shù)列不是等差或等比數(shù)列,則只要證明存在連續(xù)三項(xiàng)不成等差或等比數(shù)列即可.而研究數(shù)列中的取值范圍問題,一般都是通過研究數(shù)列的單調(diào)性來進(jìn)行求解1、(2022年河北省張家口高三模擬試卷)已知等比數(shù)列各項(xiàng)均為正數(shù),且,則()A. B. C. D.或2、(2022年河北省衡水中學(xué)高三模擬試卷)等比數(shù)列{an}中,每項(xiàng)均為正數(shù),且a3a8=81,則log3a1+log3a2+…+log3a10等于()A.5 B.10 C.20 D.403、(2023·吉林長春·統(tǒng)考三模)已知等比數(shù)列的公比為(且),若,則的值為(
)A. B. C.2 D.44、(2023·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)校考一模)(多選題)已知是等比數(shù)列的前項(xiàng)和,且,則下列說法正確的是(
)A.B.C.D.5、(2023·湖南永州·統(tǒng)考三模)已知等比數(shù)列,其前項(xiàng)和為,若,,則________.6、(2023·江蘇南通·統(tǒng)考一模)寫出一個(gè)同時(shí)滿足下列條件①②的等比數(shù)列的通項(xiàng)公式__________.①;②7、(2023·江蘇泰州·統(tǒng)考一模)寫出一個(gè)同時(shí)滿足下列條件①②的等比數(shù)列{}的通項(xiàng)公式=___.①;②
第42講等比數(shù)列1、等比數(shù)列的定義一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母__q__表示.2、等比數(shù)列的通項(xiàng)公式一般地,對于等比數(shù)列{an}的第n項(xiàng)an,有公式an=a1qn-1,這就是等比數(shù)列{an}的通項(xiàng)公式,其中a1為首項(xiàng),q為公比.第二通項(xiàng)公式為:an=amqn-m.3、等比數(shù)列的前n項(xiàng)和公式等比數(shù)列{an}的前n項(xiàng)和公式:Sn=eq\f(a1(1-qn),1-q)(q≠1)或Sn=eq\f(a1-anq,1-q)(q≠1).注意:(1)當(dāng)q=1時(shí),該數(shù)列是各項(xiàng)不為零的常數(shù)列,Sn=na1;(2)有關(guān)等比數(shù)列的求和問題,當(dāng)q不能確定時(shí),應(yīng)分q=1,q≠1來討論.4、等比數(shù)列的性質(zhì)(1)若a,G,b成等比數(shù)列,則稱G為a和b的等比中項(xiàng),則G2=ab.(2)等比數(shù)列{an}中,若m+n=k+l(m,n,k,l∈N*),則有am·an=ak·al,特別地,當(dāng)m+n=2p時(shí),am·an=aeq\o\al(2,p).(3)設(shè)Sm是等比數(shù)列{an}的前n項(xiàng)和,則Sm,S2m-Sm,S3m-S2m滿足關(guān)系式(S2m-Sm)2=Sm·(S3m-S2m).(4)等比數(shù)列的單調(diào)性,若首項(xiàng)a1>0,公比q>1或首項(xiàng)a1<0,公比0<q<1,則數(shù)列為遞增數(shù)列;若首項(xiàng)a1>0,公比0<q<1或首項(xiàng)a1<0,公比q>1,則數(shù)列為遞減數(shù)列;若公比q=1,則數(shù)列為常數(shù)列;公比q<0,則數(shù)列為擺動(dòng)數(shù)列.(5)若{an}和{bn}均為等比數(shù)列,則{λan}(λ≠0)、{|an|}、eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))、{aeq\o\al(2,n)}、eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,bn)))、{manbn}(m≠0)仍為等比數(shù)列.1、(2022?乙卷(文))已知等比數(shù)列的前3項(xiàng)和為168,,則A.14 B.12 C.6 D.3【答案】【解析】設(shè)等比數(shù)列的公比為,,由題意,.前3項(xiàng)和為,,,,則,故選:.2、(2021?甲卷(文))記為等比數(shù)列的前項(xiàng)和.若,,則A.7 B.8 C.9 D.10【答案】【解析】為等比數(shù)列的前項(xiàng)和,,,由等比數(shù)列的性質(zhì),可知,,成等比數(shù)列,,2,成等比數(shù)列,,解得.故選:.3、(2023?甲卷(文))記為等比數(shù)列的前項(xiàng)和.若,則的公比為.【答案】.【解析】等比數(shù)列中,,則,所以,解得.故答案為:.4、(2021?上海)已知為無窮等比數(shù)列,,的各項(xiàng)和為9,,則數(shù)列的各項(xiàng)和為.【答案】.【解析】設(shè)的公比為,由,的各項(xiàng)和為9,可得,解得,所以,,可得數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,則數(shù)列的各項(xiàng)和為.故答案為:.5、(2023?乙卷(理))已知為等比數(shù)列,,,則.【答案】.【解析】等比數(shù)列,,解得,而,可得,即,.故答案為:.6、(2021?甲卷(理))等比數(shù)列的公比為,前項(xiàng)和為.設(shè)甲:,乙:是遞增數(shù)列,則A.甲是乙的充分條件但不是必要條件 B.甲是乙的必要條件但不是充分條件 C.甲是乙的充要條件 D.甲既不是乙的充分條件也不是乙的必要條件【答案】【解析】若,,則,則是遞減數(shù)列,不滿足充分性;,則,,若是遞增數(shù)列,,則,,滿足必要性,故甲是乙的必要條件但不是充分條件,故選:.7、(2023?天津)已知為等比數(shù)列,為數(shù)列的前項(xiàng)和,,則的值為A.3 B.18 C.54 D.152【答案】【解析】因?yàn)闉榈缺葦?shù)列,,所以,,由等比數(shù)列的性質(zhì)可得,,即,所以或(舍,所以,,則.故選:.8、(2023?甲卷(理))已知等比數(shù)列中,,為前項(xiàng)和,,則A.7 B.9 C.15 D.30【答案】【解析】等比數(shù)列中,設(shè)公比為,,為前項(xiàng)和,,顯然,(如果,可得矛盾,如果,可得矛盾),可得,解得,即或,所以當(dāng)時(shí),.當(dāng)時(shí),.沒有選項(xiàng).故選:.9、(2022?上海)已知等比數(shù)列的前項(xiàng)和為,前項(xiàng)積為,則下列選項(xiàng)判斷正確的是A.若,則數(shù)列是遞增數(shù)列 B.若,則數(shù)列是遞增數(shù)列 C.若數(shù)列是遞增數(shù)列,則 D.若數(shù)列是遞增數(shù)列,則【答案】【解析】如果數(shù)列,公比為,滿足,但是數(shù)列不是遞增數(shù)列,所以不正確;如果數(shù)列,公比為,滿足,但是數(shù)列不是遞增數(shù)列,所以不正確;如果數(shù)列,公比為,,數(shù)列是遞增數(shù)列,但是,所以不正確;數(shù)列是遞增數(shù)列,可知,可得,所以,可得正確,所以正確;故選:.10、(2023?新高考Ⅱ)記為等比數(shù)列的前項(xiàng)和,若,,則A.120 B.85 C. D.【答案】【解析】等比數(shù)列中,,,顯然公比,設(shè)首項(xiàng)為,則①,②,化簡②得,解得或(不合題意,舍去),代入①得,所以.故選:.1、若等比數(shù)列{an}的各項(xiàng)均為正數(shù),a2=3,4aeq\o\al(2,3)=a1a7,則a5等于()A.eq\f(3,4)B.eq\f(3,8)C.12D.24【答案】:D【解析】:數(shù)列{an}是等比數(shù)列,各項(xiàng)均為正數(shù),4aeq\o\al(2,3)=a1a7=aeq\o\al(2,4),所以q2=eq\f(a\o\al(2,4),a\o\al(2,3))=4,所以q=2.所以a5=a2·q3=3×23=24,故選D.2、等比數(shù)列{an}的前n項(xiàng)和為Sn=32n-1+r,則r的值為()A.eq\f(1,3)B.-eq\f(1,3)C.eq\f(1,9)D.-eq\f(1,9)【答案】:B【解析】:當(dāng)n=1時(shí),a1=S1=3+r,當(dāng)n≥2時(shí),an=Sn-Sn-1=32n-1-32n-3=32n-3(32-1)=8·32n-3=8·32n-2·3-1=eq\f(8,3)·9n-1,所以3+r=eq\f(8,3),即r=-eq\f(1,3),故選B.3、已知遞增的等比數(shù)列{an}中,a2=6,a1+1,a2+2,a3成等差數(shù)列,則該數(shù)列的前6項(xiàng)和S6等于()A.93B.189C.eq\f(189,16)D.378【答案】:B【解析】:設(shè)數(shù)列{an}的公比為q,由題意可知,q>1,且2(a2+2)=a1+1+a3,即2×(6+2)=eq\f(6,q)+1+6q,整理可得2q2-5q+2=0,則q=2eq\b\lc\(\rc\)(\a\vs4\al\co1(q=\f(1,2)舍去)),則a1=eq\f(6,2)=3,∴數(shù)列{an}的前6項(xiàng)和S6=eq\f(3×\b\lc\(\rc\)(\a\vs4\al\co1(1-26)),1-2)=189.4、(2022年廣州附屬中學(xué)高三模擬試卷)已知等比數(shù)列的前n項(xiàng)和為,若,,則______.【答案】【解析】設(shè)等比數(shù)列的公比為,因?yàn)?,,所以,則,,所以,解得,所以;故答案為:5、(2023·云南紅河·統(tǒng)考一模)在數(shù)列中,,,若為等比數(shù)列,則____________.【答案】127【詳解】設(shè)等比數(shù)列的公比為q,則,所以,故.故答案為:127.考向一等比數(shù)列的基本運(yùn)算例1、(1)設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=3,S4=15,則公比q等于()A.5B.4C.3D.2(2)已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前4項(xiàng)和為15,且a5=3a3+4a1,則a3等于()A.16B.8C.4D.2(3)(2021·吉林延邊朝鮮族自治州·高三月考(文))已知各項(xiàng)均為正數(shù)且單調(diào)遞減的等比數(shù)列滿足、、成等差數(shù)列.其前項(xiàng)和為,且,則()A. B. C. D.【答案】.(1)D(2)C(3)C【解析】(1):因?yàn)镾2=3,S4=15,S4-S2=12,所以eq\b\lc\{\rc\(\a\vs4\al\co1(a1+a2=3,,a3+a4=12,))兩個(gè)方程左右兩邊分別相除,得q2=4,因?yàn)閿?shù)列是正項(xiàng)等比數(shù)列,所以q=2,故選D.:設(shè)等比數(shù)列{an}的公比為q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因?yàn)閿?shù)列{an}的各項(xiàng)均為正數(shù),所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.(3)【解析】:由,,成等差數(shù)列,得:,設(shè)的公比為,則,解得:或,又單調(diào)遞減,,,解得:,數(shù)列的通項(xiàng)公式為:,.故選:C.方法總結(jié):(1)等比數(shù)列基本量的運(yùn)算是等比數(shù)列中的一類基本問題,等比數(shù)列中有五個(gè)量a1,n,q,an,Sn,一般可以“知三求二”,通過列方程(組)便可迎刃而解;(2)等比數(shù)列的前n項(xiàng)和公式涉及對公比q的分類討論,當(dāng)q=1時(shí),{an}的前n項(xiàng)和Sn=na1;當(dāng)q≠1時(shí),{an}的前n項(xiàng)和Sn=eq\f(a11-qn,1-q)=eq\f(a1-anq,1-q)??枷蚨缺葦?shù)列的性質(zhì)例2、(1)已知等比數(shù)列{an}的各項(xiàng)為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=()A.12 B.10C.8 D.2+log35(2)設(shè)等比數(shù)列{an}中,前n項(xiàng)和為Sn,已知S3=8,S6=7,則a7+a8+a9等于()A.eq\f(1,8) B.-eq\f(1,8)C.eq\f(57,8) D.eq\f(55,8)(3)已知等比數(shù)列{an}共有2n項(xiàng),其和為-240,且奇數(shù)項(xiàng)的和比偶數(shù)項(xiàng)的和大80,則公比q=________.【答案】(1)B(2)A(3)2【解析】(1)由a5a6+a4a7=18,得a5a6=9,所以log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5=5log39=10.(2)因?yàn)閍7+a8+a9=S9-S6,且S3,S6-S3,S9-S6也成等比數(shù)列,即8,-1,S9-S6成等比數(shù)列,所以8(S9-S6)=1,即S9-S6=eq\f(1,8),所以a7+a8+a9=eq\f(1,8).(3)由題意,得eq\b\lc\{\rc\(\a\vs4\al\co1(S奇+S偶=-240,,S奇-S偶=80,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(S奇=-80,,S偶=-160,))所以q=eq\f(S偶,S奇)=eq\f(-160,-80)=2.變式1、(1)在等比數(shù)列{an}中,若a1a2a3a4=1,a13a14a15a16=8,則a41a42a43a44=________;【答案】1024【解析】由等比數(shù)列的性質(zhì)可知,依次4項(xiàng)的積為等比數(shù)列,設(shè)其公比為q,T1=a1a2a3a4=1,T4=a13a14a15a16=8,所以T4=T1q3=1·q3=8,即q=2,所以T11=a41a42a43a44=T1·q10=210=1024.(2)已知數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,n∈N*,若a1+a2+a3=3,a4+a5+a6=6,則S12=________;【答案】45【解析】設(shè)等比數(shù)列{an}的公比為q,則eq\f(a4+a5+a6,a1+a2+a3)=q3=eq\f(6,3)=2.因?yàn)镾6=a1+a2+a3+a4+a5+a6=9,S12-S6=a7+a8+a9+a10+a11+a12,所以eq\f(S12-S6,S6)=eq\f(a7+a8+a9+a10+a11+a12,a1+a2+a3+a4+a5+a6)=q6=4,所以S12=5S6=45.(3)已知{an}是等比數(shù)列,a2=2,a5=eq\f(1,4),則a1a2+a2a3+…+anan+1=________.【答案】eq\f(32,3)(1-4-n)【解析】因?yàn)閍2=2,a5=eq\f(1,4),所以a1=4,q=eq\f(1,2),所以a1a2+a2a3+…+anan+1=eq\f(8\b\lc\[\rc\](\a\vs4\al\co1(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)))\s\up12(n))),1-\f(1,4))=eq\f(32,3)(1-4-n).方法總結(jié):(1)在解決等比數(shù)列的有關(guān)問題時(shí),要注意挖掘隱含條件,利用性質(zhì),特別是性質(zhì)“若m+n=p+q(m,n,p,q∈N*),則am·an=ap·aq”,可以減少運(yùn)算量,提高解題速度.(2)在應(yīng)用相應(yīng)性質(zhì)解題時(shí),要注意性質(zhì)成立的前提條件,有時(shí)需要進(jìn)行適當(dāng)變形.此外,解題時(shí)注意設(shè)而不求思想的運(yùn)用考向三等比數(shù)列的判定與證明例3、(1)設(shè)等比數(shù)列{an}的公比為q,則下列結(jié)論正確的是()A.?dāng)?shù)列{anan+1}是公比為q的等比數(shù)列B.?dāng)?shù)列{an+an+1}是公比為q的等比數(shù)列C.?dāng)?shù)列{an-an+1}是公比為q的等比數(shù)列D.?dāng)?shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是公比為eq\f(1,q)的等比數(shù)列【答案】:D【解析】:對于A,由eq\f(anan+1,an-1an)=q2(n≥2)知其是公比為q2的等比數(shù)列;對于B,若q=-1,則{an+an+1}項(xiàng)中有0,不是等比數(shù)列;對于C,若q=1,則數(shù)列{an-an+1}項(xiàng)中有0,不是等比數(shù)列;對于D,eq\f(\f(1,an+1),\f(1,an))=eq\f(an,an+1)=eq\f(1,q),所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是公比為eq\f(1,q)的等比數(shù)列,故選D.(2)(2023·安徽蚌埠·統(tǒng)考三模)(多選)已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)積為,則下列結(jié)論正確的是(
)A.?dāng)?shù)列是等差數(shù)列 B.?dāng)?shù)列是等差數(shù)列C.?dāng)?shù)列是等比數(shù)列 D.?dāng)?shù)列是等差數(shù)列【答案】ABC【詳解】設(shè)等差數(shù)列的公差為,則,∴.對于A選項(xiàng),,∴為等差數(shù)列,A正確;對于B選項(xiàng),令,∴,故數(shù)列是等差數(shù)列,B正確;設(shè)等比數(shù)列的公比為,對于C選項(xiàng),令,則,故數(shù)列是等比數(shù)列,C正確;對于D選項(xiàng),∵不一定為常數(shù),故數(shù)列不一定是等差數(shù)列,故D錯(cuò)誤;故選:ABC.變式1、(1)已知數(shù)列{an}的前n項(xiàng)和為Sn,且an+Sn=n.若數(shù)列{bn}滿足b1=a1,bn=an-an-1(n≥2),求證:數(shù)列{bn}是等比數(shù)列;(2)已知數(shù)列{an}滿足a1=1,a2=2,an+2=eq\f(an+an+1,2),n∈N*.①令bn=an+1-an,求證:{bn}是等比數(shù)列;②求數(shù)列{an}的通項(xiàng)公式.【解析】(1)因?yàn)橛衫?(2)知an=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n),所以當(dāng)n≥2時(shí),bn=an-an-1=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n)-eq\b\lc\[\rc\](\a\vs4\al\co1(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))\s\up12(n-1)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n-1)-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n).又b1=a1=eq\f(1,2)也符合上式,所以bn=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n).因?yàn)閑q\f(bn+1,bn)=eq\f(1,2),所以數(shù)列{bn}是等比數(shù)列.(2)①由題意,得b1=a2-a1=1.當(dāng)n≥2時(shí),bn=an+1-an=eq\f(an-1+an,2)-an=-eq\f(1,2)(an-an-1)=-eq\f(1,2)bn-1,則eq\f(bn,bn-1)=-eq\f(1,2).故{bn}是以1為首項(xiàng),-eq\f(1,2)為公比的等比數(shù)列.②由①知bn=an+1-an=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))eq\s\up12(n-1),當(dāng)n≥2時(shí),an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+1+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))eq\s\up12(n-2)=1+eq\f(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))\s\up12(n-1),1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2))))=1+eq\f(2,3)[1-eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))eq\s\up12(n-1)]=eq\f(5,3)-eq\f(2,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))eq\s\up12(n-1).當(dāng)n=1時(shí),eq\f(5,3)-eq\f(2,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))eq\s\up12(1-1)=1=a1,故an=eq\f(5,3)-eq\f(2,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))eq\s\
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 戰(zhàn)略合作方銷售代理合同范本
- 土地使用權(quán)買賣合同樣本
- 臨時(shí)雇傭合同標(biāo)準(zhǔn)文本
- 高校畢業(yè)生實(shí)習(xí)協(xié)議合同
- 股份合作企業(yè)合同范本
- 婚禮場地租賃合同書
- 度企業(yè)信用反擔(dān)保合同協(xié)議
- 企業(yè)安全生產(chǎn)責(zé)任協(xié)議合同
- 勞動(dòng)合同樣本:員工長期雇傭
- 海濱度假村物業(yè)銷售合同協(xié)議
- 中考數(shù)學(xué)總復(fù)習(xí)全套課件
- 粉塵爆炸風(fēng)險(xiǎn)評估記錄-危險(xiǎn)源辨識(shí)與評價(jià)表
- 北師大版 數(shù)學(xué) 三年級下冊 單元作業(yè)設(shè)計(jì) 面積
- 智能農(nóng)業(yè)除草機(jī)器人研究現(xiàn)狀與趨勢分析
- 風(fēng)電工作流程圖
- 社會(huì)救助公共基礎(chǔ)知識(shí)題庫及答案
- 《論文所用框架圖》課件
- 人教版三年級下冊說課標(biāo)、說教材
- 《民法典》背景下違約精神損害賠償制度適用問題
- 松下機(jī)器人操作手冊
評論
0/150
提交評論