河南省鄭州市鄭東新區(qū)美秀初級中學2025年下學期初三期末檢測試題考試數(shù)學試題含解析_第1頁
河南省鄭州市鄭東新區(qū)美秀初級中學2025年下學期初三期末檢測試題考試數(shù)學試題含解析_第2頁
河南省鄭州市鄭東新區(qū)美秀初級中學2025年下學期初三期末檢測試題考試數(shù)學試題含解析_第3頁
河南省鄭州市鄭東新區(qū)美秀初級中學2025年下學期初三期末檢測試題考試數(shù)學試題含解析_第4頁
河南省鄭州市鄭東新區(qū)美秀初級中學2025年下學期初三期末檢測試題考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省鄭州市鄭東新區(qū)美秀初級中學2025年下學期初三期末檢測試題考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④2.如圖,在中,面積是16,的垂直平分線分別交邊于點,若點為邊的中點,點為線段上一動點,則周長的最小值為()A.6 B.8 C.10 D.123.如圖圖形中,是中心對稱圖形的是()A. B. C. D.4.2017年5月5日國產(chǎn)大型客機C919首飛成功,圓了中國人的“大飛機夢”,它顏值高性能好,全長近39米,最大載客人數(shù)168人,最大航程約5550公里.數(shù)字5550用科學記數(shù)法表示為()A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×1035.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個 B.4個 C.3個 D.2個6.如圖,向四個形狀不同高同為h的水瓶中注水,注滿為止.如果注水量V(升)與水深h(厘米)的函數(shù)關系圖象如圖所示,那么水瓶的形狀是()A. B. C. D.7.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+318.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.9.如圖所示,,結論:①;②;③;④,其中正確的是有()A.1個 B.2個 C.3個 D.4個10.如圖,已知,用尺規(guī)作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點二、填空題(共7小題,每小題3分,滿分21分)11.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,那么當y1>y2時,x的取值范圍是_____.12.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.13.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.14.關于的方程有增根,則______.15.如圖,已知直線,直線m、n與a、b、c分別交于點A、C、E和B、D、F,如果,,,那么______.16.如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為_______cm.17.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點C旋轉,使得點A落在點A′,點B落在點B′.若點A′在邊AB上,則點B、B′的距離為_____.三、解答題(共7小題,滿分69分)18.(10分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.(1)求證:;(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.19.(5分)解不等式組,并把它的解集表示在數(shù)軸上.20.(8分)甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數(shù)

眾數(shù)

中位數(shù)

方差

8

8

0.4

9

3.2

(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).21.(10分)在2018年韶關市開展的“善美韶關?情暖三江”的志愿者系列括動中,某志愿者組織籌集了部分資金,計劃購買甲、乙兩種書包若干個送給貧困山區(qū)的學生,已知每個甲種書包的價格比每個乙種書包的價格貴10元,用350元購買甲種書包的個數(shù)恰好與用300元購買乙種書包的個數(shù)相同,求甲、乙兩種書包每個的價格各是多少元?22.(10分)解方程:(x﹣3)(x﹣2)﹣4=1.23.(12分)某學校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表,請根據(jù)圖表中提供的信息解答下列問題:AQI指數(shù)質(zhì)量等級天數(shù)(天)0-50優(yōu)m51-100良44101-150輕度污染n151-200中度污染4201-300重度污染2300以上嚴重污染2(1)統(tǒng)計表中m=,n=,扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占%;(2)補全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少?24.(14分)某中學為了解學生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機抽查了部分學生進行調(diào)查統(tǒng)計(設每天的誦讀時間為分鐘),將調(diào)查統(tǒng)計的結果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:()請補全上面的條形圖.()所抽查學生“誦讀經(jīng)典”時間的中位數(shù)落在__________級.()如果該校共有名學生,請你估計該校平均每天“誦讀經(jīng)典”的時間不低于分鐘的學生約有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0?!叨魏瘮?shù)的圖象y軸的交點在y軸的負半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個交點的坐標是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤?!叨魏瘮?shù)y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。2、C【解析】

連接AD,AM,由于△ABC是等腰三角形,點D是BC的中點,故,在根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AC的垂直平分線可知,點A關于直線EF的對稱點為點C,,推出,故AD的長為BM+MD的最小值,由此即可得出結論.【詳解】連接AD,MA∵△ABC是等腰三角形,點D是BC邊上的中點∴∴解得∵EF是線段AC的垂直平分線∴點A關于直線EF的對稱點為點C∴∵∴AD的長為BM+MD的最小值∴△CDM的周長最短故選:C.本題考查了三角形線段長度的問題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關鍵.3、D【解析】

根據(jù)中心對稱圖形的概念和識別.【詳解】根據(jù)中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.4、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:5550=5.55×1.故選B.本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數(shù)共有3個.故選C.考點:等腰三角形的性質(zhì);勾股定理.6、D【解析】

根據(jù)一次函數(shù)的性質(zhì)結合題目中的條件解答即可.【詳解】解:由題可得,水深與注水量之間成正比例關系,∴隨著水的深度變高,需要的注水量也是均勻升高,∴水瓶的形狀是圓柱,故選:D.此題重點考查學生對一次函數(shù)的性質(zhì)的理解,掌握一次函數(shù)的性質(zhì)是解題的關鍵.7、C【解析】

本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側并不是兩個相鄰“三角形數(shù)”之和.故選:C.此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.8、C【解析】

設I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設I的邊長為x根據(jù)題意有解得或(舍去)故選:C.本題主要考查一元二次方程的應用,能夠根據(jù)題意列出方程是解題的關鍵.9、C【解析】

根據(jù)已知的條件,可由AAS判定△AEB≌△AFC,進而可根據(jù)全等三角形得出的結論來判斷各選項是否正確.【詳解】解:如圖:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正確)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正確)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正確)由于條件不足,無法證得②CD=DN;故正確的結論有:①③④;故選C.此題主要考查的是全等三角形的判定和性質(zhì),做題時要從最容易,最簡單的開始,由易到難.10、D【解析】

根據(jù)作一個角等于已知角的作法即可得出結論.【詳解】解:用尺規(guī)作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫?、?,分別交OA、OB于點E、F,

第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫?。?/p>

故選:D.本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、﹣1<x<2【解析】

根據(jù)圖象得出取值范圍即可.【詳解】解:因為直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,所以當y1>y2時,﹣1<x<2,故答案為﹣1<x<2此題考查二次函數(shù)與不等式,關鍵是根據(jù)圖象得出取值范圍.12、1【解析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運用全等三角形的判定是本題的關鍵.13、4cm.【解析】

由題意知OD⊥AB,交AB于點C,由垂徑定理可得出BC的長,在Rt△OBC中,根據(jù)勾股定理求出OC的長,由CD=OD-OC即可得出結論.【詳解】由題意知OD⊥AB,交AB于點E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.本題考查的是垂徑定理的應用,根據(jù)題意在直角三角形運用勾股定理列出方程是解答此題的關鍵.14、-1【解析】根據(jù)分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點睛:此題主要考查了分式方程的增根問題,解題關鍵是明確增根出現(xiàn)的原因,把增根代入最簡公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數(shù).15、【解析】

由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的長.【詳解】解:由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案為.此題考查了平行線分線段成比例定理.題目比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.16、1.【解析】試題分析:∵將△ABC繞點B順時針旋轉60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD為等邊三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF與△BDF的周長之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案為1.考點:旋轉的性質(zhì).17、4【解析】

過點C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進而利用三線合一的性質(zhì)得出AA'的值,然后利用旋轉的性質(zhì)可判定△ACA'∽△BCB',繼而利用相似三角形的對應邊成比例的性質(zhì)可得出BB'的值.【詳解】解:過點C作CH⊥AB于H,

∵在Rt△ABC中,∠C=90,cosA=,

∴AC=AB?cosA=6,BC=3,

在Rt△ACH中,AC=6,cosA=,

∴AH=AC?cosA=4,

由旋轉的性質(zhì)得,AC=A'C,BC=B'C,

∴△ACA'是等腰三角形,因此H也是AA'中點,

∴AA'=2AH=8,

又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉角,

∴∠ACA'=∠BCB',

∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.此題考查了解直角三角形、旋轉的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì),解答本題的關鍵是得出△ACA'∽△BCB'.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)10.【解析】

①只需證明兩對對應角分別相等可得兩個三角形相似;故.

②根據(jù)相似三角形的性質(zhì)求出PC長以及AP與OP的關系,然后在Rt△PCO中運用勾股定理求出OP長,從而求出AB長.【詳解】①∵四邊形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折疊可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°?∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP與△PDA的面積比為1:4,∴OCPD=OPPA=CPDA=14??√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.設OP=x,則OB=x,CO=8?x.在△PCO中,∵∠C=90°,CP=4,OP=x,CO=8?x,∴x2=(8?x)2+42.解得:x=5.∴AB=AP=2OP=10.∴邊AB的長為10.本題考查了相似三角形的判定與性質(zhì)以及翻轉變換,解題的關鍵是熟練的掌握相似三角形與翻轉變換的相關知識.19、不等式組的解是x≥3;圖見解析【解析】

先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式組的解是x≥3,在數(shù)軸上表示為:.本題考查了解一元一次不等式組和在數(shù)軸上表示不等式組的解集,能根據(jù)不等式的解集找出不等式組的解集是解此題的關鍵.20、(1)填表見解析;(2)理由見解析;(3)變小.【解析】

(1)根據(jù)眾數(shù)、平均數(shù)和中位數(shù)的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大?。催@批數(shù)據(jù)偏離平均數(shù)的大?。┰跇颖救萘肯嗤那闆r下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定.(3)根據(jù)方差公式求解:如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。驹斀狻吭囶}分析:試題解析:解:(1)甲的眾數(shù)為8,乙的平均數(shù)=(5+9+7+10+9)=8,乙的中位數(shù)為9.故填表如下:平均數(shù)

眾數(shù)

中位數(shù)

方差

8

8

8

0.4

8

9

9

3.2

(2)因為他們的平均數(shù)相等,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽;(3)如果乙再射擊1次,命中8環(huán),平均數(shù)不變,根據(jù)方差公式可得乙的射擊成績的方差變?。键c:1.方差;2.算術平均數(shù);3.中位數(shù);4.眾數(shù).21、每件乙種商品的價格為1元,每件甲種商品的價格為70元【解析】

設每件甲種商品的價格為x元,則每件乙種商品的價格為(x-10)元,根據(jù)數(shù)量=總價÷單價結合用350元購買甲種書包的個數(shù)恰好與用300元購買乙種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論