版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
海南省海口五中重點達標(biāo)名校2024-2025學(xué)年中考學(xué)業(yè)水平數(shù)學(xué)試題模擬卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列調(diào)查中,最適合采用全面調(diào)查(普查)的是()A.對我市中學(xué)生每周課外閱讀時間情況的調(diào)查B.對我市市民知曉“禮讓行人”交通新規(guī)情況的調(diào)查C.對我市中學(xué)生觀看電影《厲害了,我的國》情況的調(diào)查D.對我國首艘國產(chǎn)航母002型各零部件質(zhì)量情況的調(diào)查2.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.3.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學(xué)知識是()A.兩點之間的所有連線中,線段最短B.經(jīng)過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經(jīng)過一點有且只有一條直線與已知直線垂直4.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對5.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π6.下列計算正確的是()A.a(chǎn)6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=17.截至2010年“費爾茲獎”得主中最年輕的8位數(shù)學(xué)家獲獎時的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數(shù)據(jù)的中位數(shù)是()A.28 B.29 C.30 D.318.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=29.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.1210.下列式子中,與互為有理化因式的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.12.計算=_____.13.如圖,直線y=kx與雙曲線y=(x>0)交于點A(1,a),則k=_____.14.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.15.如圖,線段AB是⊙O的直徑,弦CD⊥AB,AB=8,∠CAB=22.5°,則CD的長等于___________________________.16.如圖,已知點A(a,b),0是原點,OA=OA1,OA⊥OA1,則點A1的坐標(biāo)是.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.18.(8分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)19.(8分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)之后的△AB′C′;求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.20.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.21.(8分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關(guān)系?并說明理由;(3)若PE=1,求△PBD的面積.22.(10分)計算23.(12分)計算:(1-n)0-|3-2|+(-)-1+4cos30°.24.校園手機現(xiàn)象已經(jīng)受到社會的廣泛關(guān)注.某校的一個興趣小組對“是否贊成中學(xué)生帶手機進校園”的問題在該校校園內(nèi)進行了隨機調(diào)查.并將調(diào)查數(shù)據(jù)作出如下不完整的整理;看法頻數(shù)頻率贊成5無所謂0.1反對400.8(1)本次調(diào)查共調(diào)查了人;(直接填空)請把整理的不完整圖表補充完整;若該校有3000名學(xué)生,請您估計該校持“反對”態(tài)度的學(xué)生人數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
由普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似.由此,對各選項進行辨析即可.【詳解】A、對我市中學(xué)生每周課外閱讀時間情況的調(diào)查,人數(shù)眾多,意義不大,應(yīng)采用抽樣調(diào)查,故此選項錯誤;B、對我市市民知曉“禮讓行人”交通新規(guī)情況的調(diào)查,人數(shù)眾多,意義不大,應(yīng)采用抽樣調(diào)查,故此選項錯誤;C、對我市中學(xué)生觀看電影《厲害了,我的國》情況的調(diào)查,人數(shù)眾多,意義不大,應(yīng)采用抽樣調(diào)查,故此選項錯誤;D、對我國首艘國產(chǎn)航母002型各零部件質(zhì)量情況的調(diào)查,意義重大,應(yīng)采用普查,故此選項正確;故選D.本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.2、D【解析】
連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.3、B【解析】
本題要根據(jù)過平面上的兩點有且只有一條直線的性質(zhì)解答.【詳解】根據(jù)兩點確定一條直線.故選:B.本題考查了“兩點確定一條直線”的公理,難度適中.4、D【解析】
根據(jù)矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數(shù).【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.此題主要考查矩形的性質(zhì)及全等三角形的判定,解題的關(guān)鍵是熟知矩形的對稱性.5、D【解析】
利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關(guān)鍵.6、D【解析】解:A.a(chǎn)6÷a2=a4,故A錯誤;B.(﹣2)﹣1=﹣,故B錯誤;C.(﹣3x2)?2x3=﹣6x5,故C錯;D.(π﹣3)0=1,故D正確.故選D.7、C【解析】
根據(jù)中位數(shù)的定義即可解答.【詳解】解:把這些數(shù)從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個數(shù)的平均數(shù)是:=30,則這組數(shù)據(jù)的中位數(shù)是30;故本題答案為:C.此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).8、B【解析】
根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關(guān)鍵.9、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關(guān)系;3.等腰三角形的性質(zhì).10、B【解析】
直接利用有理化因式的定義分析得出答案.【詳解】∵()(,)=12﹣2,=10,∴與互為有理化因式的是:,故選B.本題考查了有理化因式,如果兩個含有二次根式的非零代數(shù)式相乘,它們的積不含有二次根式,就說這兩個非零代數(shù)式互為有理化因式.單項二次根式的有理化因式是它本身或者本身的相反數(shù);其他代數(shù)式的有理化因式可用平方差公式來進行分步確定.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、0【解析】分析:先計算乘方、零指數(shù)冪,再計算加減可得結(jié)果.詳解:1-1=0故答案為0.點睛:零指數(shù)冪成立的條件是底數(shù)不為0.13、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點A(1,a),∴a=1,k=1.故答案為1.14、【解析】
如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.15、4【解析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出CE的長,進而得出CD.【詳解】連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴OC=AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴CE=OC=,∴CD=2CE=,故答案為.考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.16、(﹣b,a)【解析】解:如圖,從A、A1向x軸作垂線,設(shè)A1的坐標(biāo)為(x,y),設(shè)∠AOX=α,∠A1OD=β,A1坐標(biāo)(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標(biāo)為(﹣b,a).【點評】重點理解三角函數(shù)的定義和求解方法,主要應(yīng)用公式sinα=cosβ,cosα=sinβ.三、解答題(共8題,共72分)17、【解析】
先根據(jù)平行線的性質(zhì)證明△ADE∽△FGH,再由線段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【詳解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴,∵DE∥BC,F(xiàn)G∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴設(shè)BG=2k,GH=4k,HC=1k,∴DF=2k,F(xiàn)E=1k,∴DE=5k,∴.本題考查了平行線的性質(zhì)和三角形相似的判定和相似比.18、AD=38.28米.【解析】
過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【詳解】過點B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.19、.(1)見解析(2)【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點B、C旋轉(zhuǎn)后的對應(yīng)點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據(jù)扇形的面積公式列式進行計算即可得解.【詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.20、(1)見解析(2)6【解析】
(1)利用對應(yīng)兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:21、(1)見解析;(2)AC∥BD,理由見解析;(3)【解析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;
(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關(guān)系;
(3)首先利用相似三角形的性質(zhì)表示出BD,PM的長,進而根據(jù)三角形的面積公式得到△PBD的面積.【詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結(jié)論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深度學(xué)習(xí)及自動駕駛應(yīng)用 課件 第6、7章 基于CNN的自動駕駛場景語義分割理論與實踐、循環(huán)神經(jīng)網(wǎng)絡(luò)及自動駕駛車輛換道行為預(yù)測
- 污水處理設(shè)施管網(wǎng)配套設(shè)施合同
- 環(huán)保工程合同模板
- 物流配送計劃生育承諾書模板
- 知識產(chǎn)權(quán)許可使用合同解除協(xié)議
- 移動辦公通訊實施方案
- 企業(yè)員工道德提案管理辦法
- 投資權(quán)益協(xié)議書
- 親子園幼師聘用合同細則
- 物流公司承運商安全規(guī)范
- 標(biāo)準齒輪主要參數(shù)及其計算課件
- 木材在冰雪運動中的應(yīng)用
- 大學(xué)生職業(yè)生涯規(guī)劃書軟件技術(shù)
- 2022中小學(xué)高級教師任職資格評審講課答辯題目及答案
- 針刺傷標(biāo)準預(yù)防
- 《門店選址開發(fā)》課件
- 《急救藥品》課件
- 氯酸鹽行業(yè)分析
- 國開電大 可編程控制器應(yīng)用實訓(xùn) 形考任務(wù)6實訓(xùn)報告
- 社會醫(yī)學(xué)教學(xué)設(shè)計案例
- GB/T 34120-2023電化學(xué)儲能系統(tǒng)儲能變流器技術(shù)要求
評論
0/150
提交評論