廣東省清遠市名校2025屆初三下學期期末調研測試數學試題文試題含解析_第1頁
廣東省清遠市名校2025屆初三下學期期末調研測試數學試題文試題含解析_第2頁
廣東省清遠市名校2025屆初三下學期期末調研測試數學試題文試題含解析_第3頁
廣東省清遠市名校2025屆初三下學期期末調研測試數學試題文試題含解析_第4頁
廣東省清遠市名校2025屆初三下學期期末調研測試數學試題文試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省清遠市名校2025屆初三下學期期末調研測試數學試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉,旋轉角記為α(其中0°<α<45°),旋轉后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數圖象中,能反映y與x之間關系的是()A. B. C. D.2.解分式方程﹣3=時,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=43.下列計算錯誤的是()A.4x3?2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.上體育課時,小明5次投擲實心球的成績如下表所示,則這組數據的眾數與中位數分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.05.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣26.下列運算正確的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a57.在平面直角坐標系中,點P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.某班

30名學生的身高情況如下表:身高人數134787則這

30

名學生身高的眾數和中位數分別是A., B.,C., D.,9.有理數a,b,c,d在數軸上的對應點的位置如圖所示,則正確的結論是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>010.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.11.將不等式組的解集在數軸上表示,下列表示中正確的是()A. B. C. D.12.A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設B種飲料單價為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=13二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式>4﹣x的解集為_____.14.已知一組數據,,,,的平均數是,那么這組數據的方差等于________.15.如果一個正多邊形每一個內角都等于144°,那么這個正多邊形的邊數是____.16.方程的根為_____.17.如圖,點A,B在反比例函數y=(x>0)的圖象上,點C,D在反比例函數y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.18.如圖,AB是圓O的直徑,AC是圓O的弦,AB=2,∠BAC=30°.在圖中畫出弦AD,使AD=1,則∠CAD的度數為_____°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.20.(6分)先化簡,再求值:,其中x為方程的根.21.(6分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點D,DE⊥AB于點E.(1)依題意補全圖形;(2)猜想AE與CD的數量關系,并證明.22.(8分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數的圖象經過點,求反比例函數的解析式;(3)當時,若直線與直線和(2)反比例函數的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.23.(8分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.24.(10分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數y=kx+b的圖象與反比例函數的圖象的兩個交點.(1)求反比例函數和一次函數的解析式;(2)求直線AB與x軸的交點C的坐標及△AOB的面積;(3)求方程的解集(請直接寫出答案).25.(10分)今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調查,調查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據調查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表:對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結合統(tǒng)計圖表,回答下列問題.(1)本次參與調查的學生共有人,m=,n=;(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是度;(3)請補全條形統(tǒng)計圖;(4)根據調查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數字和為奇數,則小明去;否則小剛去.請用樹狀圖或列表法說明這個游戲規(guī)則是否公平.26.(12分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數量關系為.27.(12分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點睛】本題主要考查了旋轉、相似等知識,解題的關鍵是根據已知得出△ACG∽△ADH.2、B【解析】

方程兩邊同時乘以(x-2),轉化為整式方程,由此即可作出判斷.【詳解】方程兩邊同時乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.本題考查了解分式方程,利用了轉化的思想,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.3、B【解析】

根據單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式;合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變;冪的乘方法則:底數不變,指數相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項:4x3?1x1=8x5,故原題計算正確;

B選項:a4和a3不是同類項,不能合并,故原題計算錯誤;

C選項:(-x1)5=-x10,故原題計算正確;

D選項:(a-b)1=a1-1ab+b1,故原題計算正確;

故選:B.考查了整式的乘法,關鍵是掌握整式的乘法各計算法則.4、D【解析】

解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現1次,出現次數最多,8.2排在第三,∴這組數據的眾數與中位數分別是:8.1,8.2.故選D.本題考查眾數;中位數.5、B【解析】分析:首先得到當點E旋轉至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉至y軸上時DE最小;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質,解題的關鍵是從圖形中整理出直角三角形.6、B【解析】

根據去括號法則,積的乘方的性質,完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.【詳解】解:A、因為﹣(a﹣1)=﹣a+1,故本選項錯誤;B、(﹣2a3)2=4a6,正確;C、因為(a﹣b)2=a2﹣2ab+b2,故本選項錯誤;D、因為a3與a2不是同類項,而且是加法,不能運算,故本選項錯誤.故選B.本題考查了合并同類項,積的乘方,完全平方公式,理清指數的變化是解題的關鍵.7、A【解析】

分點P的橫坐標是正數和負數兩種情況討論求解.【詳解】①m-3>0,即m>3時,2-m<0,所以,點P(m-3,2-m)在第四象限;②m-3<0,即m<3時,2-m有可能大于0,也有可能小于0,點P(m-3,2-m)可以在第二或三象限,綜上所述,點P不可能在第一象限.故選A.本題考查了各象限內點的坐標的符號特征,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、A【解析】

找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據.【詳解】解:這組數據中,出現的次數最多,故眾數為,

共有30人,

第15和16人身高的平均數為中位數,

即中位數為:,

故選:A.本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大或從大到小的順序排列,如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.9、C【解析】

根據數軸上點的位置關系,可得a,b,c,d的大小,根據有理數的運算,絕對值的性質,可得答案.【詳解】解:由數軸上點的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合題意;B、bd<0,故B不符合題意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合題意;D、b+c<0,故D不符合題意;故選:C.本題考查了有理數大小的比較、有理數的運算,絕對值的性質,熟練掌握相關的知識是解題的關鍵10、D【解析】

連接EB,設圓O半徑為r,根據勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.11、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數軸上即可.解:不等式可化為:,即.

∴在數軸上可表示為.故選B.“點睛”不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.12、A【解析】

要列方程,首先要根據題意找出題中存在的等量關系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數1元,明確了等量關系再列方程就不那么難了.【詳解】設B種飲料單價為x元/瓶,則A種飲料單價為(x-1)元/瓶,根據小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.列方程題的關鍵是找出題中存在的等量關系,此題的等量關系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x>1.【解析】

按照去分母、去括號、移項、合并同類項、系數化為1的步驟求解即可.【詳解】解:去分母得:x﹣1>8﹣2x,移項合并得:3x>12,解得:x>1,故答案為:x>1本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.14、5.2【解析】分析:首先根據平均數求出x的值,然后根據方差的計算法則進行計算即可得出答案.詳解:∵平均數為6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差為:.點睛:本題主要考查的是平均數和方差的計算法則,屬于基礎題型.明確計算公式是解決這個問題的關鍵.15、1【解析】

設正多邊形的邊數為n,然后根據多邊形的內角和公式列方程求解即可.【詳解】解:設正多邊形的邊數為n,由題意得,=144°,解得n=1.故答案為1.本題考查了多邊形的內角與外角,熟記公式并準確列出方程是解題的關鍵.16、﹣2或﹣7【解析】

把無理方程轉化為整式方程即可解決問題.【詳解】兩邊平方得到:13+2=25,∴=6,∴(x+11)(2-x)=36,解得x=-2或-7,經檢驗x=-2或-7都是原方程的解.故答案為-2或-7本題考查無理方程,解題的關鍵是學會把無理方程轉化為整式方程.17、1【解析】

過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數y=(x>0)的圖象上,點A,B的橫坐標分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.本題考查反比例函數的性質,k的幾何意義.能夠將三角形面積進行合理的轉換是解題的關鍵.18、30或1.【解析】

根據題意作圖,由AB是圓O的直徑,可得∠ADB=∠AD′B=1°,繼而可求得∠DAB的度數,則可求得答案.【詳解】解:如圖,∵AB是圓O的直徑,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度數為:30°或1°.故答案為30或1.本題考查圓周角定理;含30度角的直角三角形.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解析】試題分析:(1)先證得四邊形ABED是平行四邊形,又AB=AD,鄰邊相等的平行四邊形是菱形;(2)四邊形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.試題解析:梯形ABCD中,AD∥BC,∴四邊形ABED是平行四邊形,又AB=AD,∴四邊形ABED是菱形;(2)∵四邊形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考點:1.菱形的判定;2.直角三角形的性質;3.平行四邊形的判定20、1【解析】

先將除式括號里面的通分后,將除法轉換成乘法,約分化簡.然后解一元二次方程,根據分式有意義的條件選擇合適的x值,代入求值.【詳解】解:原式=.解得,,∵時,無意義,∴取.當時,原式=.21、(1)見解析;(2)見解析.【解析】

(1)根據題意畫出圖形即可;(2)利用等腰三角形的性質得∠A=45°.則∠ADE=∠A=45°,所以AE=DE,再根據角平分線性質得CD=DE,從而得到AE=CD.【詳解】解:(1)如圖:(2)AE與CD的數量關系為AE=CD.證明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.此題考查等腰三角形的性質,角平分線的性質,解題關鍵在于根據題意作輔助線.22、(1),;(2);的取值范圍是:.【解析】

(1)把代入得出的值,進而得出點坐標;(2)當時,將代入,進而得出的值,求出點坐標得出反比例函數的解析式;(3)可得,當向下運動但是不超過軸時,符合要求,進而得出的取值范圍.【詳解】解:(1)∵直線:經過點,∴,∴,∴;(2)當時,將代入,得,,∴代入得,,∴;(3)當時,即,而,如圖,,當向下運動但是不超過軸時,符合要求,∴的取值范圍是:.本題考查了反比例函數與一次函數的交點,當有兩個函數的時候,著重使用一次函數,體現了方程思想,綜合性較強.23、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數定義即可得出結果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.本題考查了等腰直角三角形的判定與性質、相似三角形的判定與性質、勾股定理、垂徑定理、三角函數等知識,熟練掌握相似三角形的判定與性質、勾股定理是關鍵.24、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】試題分析:(1)將B坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;將A坐標代入反比例解析式求出n的值,確定出A的坐標,將A與B坐標代入一次函數解析式中求出k與b的值,即可確定出一次函數解析式;(2)對于直線AB,令y=0求出x的值,即可確定出C坐標,三角形AOB面積=三角形AOC面積+三角形BOC面積,求出即可;(3)由兩函數交點A與B的橫坐標,利用圖象即可求出所求不等式的解集.試題解析:(1)∵B(2,﹣4)在y=上,∴m=﹣1.∴反比例函數的解析式為y=﹣.∵點A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b經過A(﹣4,2),B(2,﹣4),∴,解之得.∴一次函數的解析式為y=﹣x﹣2.(2)∵C是直線AB與x軸的交點,∴當y=0時,x=﹣2.∴點C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.(3)不等式的解集為:﹣4<x<0或x>2.25、解:(1)400;15%;35%.(2)1.(3)∵D等級的人數為:400×35%=140,∴補全條形統(tǒng)計圖如圖所示:(4)列樹狀圖得:∵從樹狀圖可以看出所有可能的結果有12種,數字之和為奇數的有8種,∴小明參加的概率為:P(數字之和為奇數);小剛參加的概率為:P(數字之和為偶數).∵P(數字之和為奇數)≠P(數字之和為偶數),∴游戲規(guī)則不公平.【解析】(1)根據“基本了解”的人數以及所占比例,可求得總人數:180÷45%=400人.在根據頻數、百分比之間的關系,可得m,n的值:.(2)根據在扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應的扇形圓心的度數與360°的比可得出統(tǒng)計圖中D部分扇形所對應的圓心角:360°×35%=1°.(3)根據D等級的人數為:400×35%=140,據此補全條形統(tǒng)計圖.(4)用樹狀圖或列表列舉出所有可能,分別求出小明和小剛參加的概率,若概率相等,游戲規(guī)則公平;反之概率不相等,游戲規(guī)則不公平.26、探究:證明見解析;應用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結論;

應用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結論;

拓展:(1)同探究的方法得出△ABD≌△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論