版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陜西省寶雞市眉縣營頭中學(xué)2021-2022學(xué)年中考數(shù)學(xué)模擬精編試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示,將含有30°角的三角板的直角頂點放在相互平行的兩條直線其中一條上,若∠1=35°,則∠2的度數(shù)為()A.10° B.20° C.25° D.30°2.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.3.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當(dāng)三個數(shù)字與所設(shè)定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設(shè)密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.14.的化簡結(jié)果為A.3 B. C. D.95.剪紙是我國傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.6.下列計算正確的是()A. B. C. D.7.下列運算結(jié)果正確的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2?(﹣x3)=﹣x5 D.2x2÷x2=x8.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.9.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為()A.8 B.8 C.4 D.610.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.△ABC的頂點都在方格紙的格點上,則sinA=_▲.12.下列說法正確的是_____.(請直接填寫序號)①“若a>b,則>.”是真命題.②六邊形的內(nèi)角和是其外角和的2倍.③函數(shù)y=的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.13.因式分解:4x2y﹣9y3=_____.14.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側(cè)面的B點,最少要用_____秒鐘.15.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是_____.16.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.17.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.三、解答題(共7小題,滿分69分)18.(10分)如圖1,拋物線l1:y=﹣x2+bx+3交x軸于點A、B,(點A在點B的左側(cè)),交y軸于點C,其對稱軸為x=1,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(5,0),交y軸于點D(0,﹣5).(1)求拋物線l2的函數(shù)表達式;(2)P為直線x=1上一動點,連接PA、PC,當(dāng)PA=PC時,求點P的坐標(biāo);(3)M為拋物線l2上一動點,過點M作直線MN∥y軸(如圖2所示),交拋物線l1于點N,求點M自點A運動至點E的過程中,線段MN長度的最大值.19.(5分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當(dāng)F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結(jié)果保留根號).20.(8分)在某小學(xué)“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結(jié)論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結(jié)論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結(jié)論的概率是多少?(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結(jié)論,則小選手可入圍進入復(fù)賽,問琪琪進入復(fù)賽的概率是多少?21.(10分)小華想復(fù)習(xí)分式方程,由于印刷問題,有一個數(shù)“?”看不清楚:.她把這個數(shù)“?”猜成5,請你幫小華解這個分式方程;小華的媽媽說:“我看到標(biāo)準答案是:方程的增根是,原分式方程無解”,請你求出原分式方程中“?”代表的數(shù)是多少?22.(10分)(1)計算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.23.(12分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標(biāo);(2)當(dāng)△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當(dāng)△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標(biāo).24.(14分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:如圖,延長AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故選C.2、C【解析】
根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應(yīng)關(guān)系是關(guān)鍵.3、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結(jié)果,一次就能打開該密碼的結(jié)果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.4、A【解析】試題分析:根據(jù)二次根式的計算化簡可得:.故選A.考點:二次根式的化簡5、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.6、A【解析】
原式各項計算得到結(jié)果,即可做出判斷.【詳解】A、原式=,正確;
B、原式不能合并,錯誤;
C、原式=,錯誤;
D、原式=2,錯誤.
故選A.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.7、C【解析】
直接利用整式的除法運算以及積的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A選項:x2+2x2=3x2,故此選項錯誤;B選項:(﹣2x2)3=﹣8x6,故此選項錯誤;C選項:x2?(﹣x3)=﹣x5,故此選項正確;D選項:2x2÷x2=2,故此選項錯誤.故選C.【點睛】考查了整式的除法運算以及積的乘方運算、合并同類項,正確掌握運算法則是解題關(guān)鍵.8、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.9、D【解析】分析:連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.10、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應(yīng)邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應(yīng)角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
在直角△ABD中利用勾股定理求得AD的長,然后利用正弦的定義求解.【詳解】在直角△ABD中,BD=1,AB=2,則AD===,則sinA===.故答案是:.12、②④⑤【解析】
根據(jù)不等式的性質(zhì)可確定①的對錯,根據(jù)多邊形的內(nèi)外角和可確定②的對錯,根據(jù)函數(shù)自變量的取值范圍可確定③的對錯,根據(jù)三角形中位線的性質(zhì)可確定④的對錯,根據(jù)正方形的性質(zhì)可確定⑤的對錯.【詳解】①“若a>b,當(dāng)c<0時,則<,故①是假命題;②六邊形的內(nèi)角和是其外角和的2倍,根據(jù)②真命題;③函數(shù)y=的自變量的取值范圍是x≥﹣1且x≠0,故③是假命題;④三角形的中位線平行于第三邊,并且等于第三邊的一半,故④是真命題;⑤正方形既是軸對稱圖形,又是中心對稱圖形,故⑤是真命題;故答案為②④⑤【點睛】本題考查了不等式的性質(zhì)、多邊形的內(nèi)外角和、函數(shù)自變量的取值范圍、三角形中位線的性質(zhì)、正方形的性質(zhì),解答本題的關(guān)鍵是熟練掌握各知識點.13、y(2x+3y)(2x-3y)【解析】
直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關(guān)鍵.14、2.5秒.【解析】
把此正方體的點A所在的面展開,然后在平面內(nèi),利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關(guān)鍵.15、【解析】分析:直接利用中心對稱圖形的性質(zhì)結(jié)合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對稱圖形,∴從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是:.故答案為.點睛:此題主要考查了中心對稱圖形的性質(zhì)和概率求法,正確把握中心對稱圖形的定義是解題關(guān)鍵.16、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當(dāng)點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.17、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】
先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內(nèi)角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.三、解答題(共7小題,滿分69分)18、(1)拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)P點坐標(biāo)為(1,1);(3)在點M自點A運動至點E的過程中,線段MN長度的最大值為12.1.【解析】
(1)由拋物線l1的對稱軸求出b的值,即可得出拋物線l1的解析式,從而得出點A、點B的坐標(biāo),由點B、點E、點D的坐標(biāo)求出拋物線l2的解析式即可;(2)作CH⊥PG交直線PG于點H,設(shè)點P的坐標(biāo)為(1,y),求出點C的坐標(biāo),進而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分別將PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)設(shè)出點M的坐標(biāo),求出兩個拋物線交點的橫坐標(biāo)分別為﹣1,4,①當(dāng)﹣1<x≤4時,點M位于點N的下方,表示出MN的長度為關(guān)于x的二次函數(shù),在x的范圍內(nèi)求二次函數(shù)的最值;②當(dāng)4<x≤1時,點M位于點N的上方,同理求出此時MN的最大值,取二者較大值,即可得出MN的最大值.【詳解】(1)∵拋物線l1:y=﹣x2+bx+3對稱軸為x=1,∴x=﹣=1,b=2,∴拋物線l1的函數(shù)表達式為:y=﹣x2+2x+3,當(dāng)y=0時,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),設(shè)拋物線l2的函數(shù)表達式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)作CH⊥PG交直線PG于點H,設(shè)P點坐標(biāo)為(1,y),由(1)可得C點坐標(biāo)為(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P點坐標(biāo)為(1,1);(3)由題意可設(shè)M(x,x2﹣4x﹣1),∵MN∥y軸,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①當(dāng)﹣1<x≤4時,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,顯然﹣1<≤4,∴當(dāng)x=時,MN有最大值12.1;②當(dāng)4<x≤1時,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,顯然當(dāng)x>時,MN隨x的增大而增大,∴當(dāng)x=1時,MN有最大值,MN=2(1﹣)2﹣=12.綜上可知:在點M自點A運動至點E的過程中,線段MN長度的最大值為12.1.【點睛】本題是二次函數(shù)與幾何綜合題,主要考查二次函數(shù)解析式的求解、勾股定理的應(yīng)用以及動點求線段最值問題.19、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構(gòu)建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設(shè)⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當(dāng)FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當(dāng)MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點睛】本題考查了圓的綜合題:熟練掌握與圓有關(guān)的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì);靈活利用全等三角形的性質(zhì);會利用面積的和差計算不規(guī)則幾何圖形的面積.20、(1)見解析;(2);(3).【解析】
(1)根據(jù)列樹狀圖的步驟和題意分析所有等可能的出現(xiàn)結(jié)果,即可畫出圖形;(2)根據(jù)(1)求出甲、乙兩位評委給出相同結(jié)論的情況數(shù),再根據(jù)概率公式即可求出答案;(3)根據(jù)(1)即可求出琪琪進入復(fù)賽的概率.【詳解】(1)畫樹狀圖如下:(2)∵共有8種等可能結(jié)果,只有甲、乙兩位評委給出相同結(jié)論的有2種可能,∴只有甲、乙兩位評委給出相同結(jié)論的概率P=;(3)∵共有8種等可能結(jié)果,三位評委中至少有兩位給出“通過”結(jié)論的有4種可能,∴樂樂進入復(fù)賽的概率P=.【點睛】此題考查了列樹狀圖,掌握列樹狀圖的步驟,找出三位評委給出相同結(jié)論的情況數(shù)是本題的關(guān)鍵,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P=.21、(1);(2)原分式方程中“?”代表的數(shù)是-1.【解析】
(1)“?”當(dāng)成5,解分式方程即可,(2)方程有增根是去分母時產(chǎn)生的,故先去分母,再將x=2代入即可解答.【詳解】(1)方程兩邊同時乘以得解得經(jīng)檢驗,是原分式方程的解.(2)設(shè)?為,方程兩邊同時乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的數(shù)是-1.【點睛】本題考查了分式方程解法和增根的定義及應(yīng)用.增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.增根確定后可按如下步驟進行:
①化分式方程為整式方程;
②把增根代入整式方程即可求得相關(guān)字母的值.22、(1);(2);【解析】
(1)根據(jù)負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以解答本題.【詳解】解:(1)原式(2)原式【點睛】本題考查分式的混合運算、實數(shù)的運算、負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪,解答本題的關(guān)鍵是明確它們各自的計算方法.23、(1)y=x2﹣x,點D的坐標(biāo)為(2,﹣);(2)t=2;(3)M點的坐標(biāo)為(2,0)或(6,0).【解析】
(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標(biāo);(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當(dāng)時,△AME∽△COD,即|t-4|:4=|t2-t|:,當(dāng)時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應(yīng)的M點的坐標(biāo).【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標(biāo)為(2,-);(2)連接AC,如圖①,AB==4,而OA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市照明項目LED路燈購銷合同
- 2024年建筑工程分包協(xié)議書
- 2024年云計算服務(wù)互操作性測試合同
- 2024廣告發(fā)布委托合同模板樣本
- 2024年工程質(zhì)量檢測合同標(biāo)準
- 2024年度物業(yè)服務(wù)合同:日常房屋租住過程中的管理與維護
- 2024年度旅游開發(fā)項目合同
- 2024年度影視制作與發(fā)布協(xié)議
- 兒子結(jié)婚上父親致辭
- 習(xí)慣為主題的演講稿3篇
- 愛心助學(xué)基金會章程樣本
- 藥物性肝損傷的藥物治療
- Python繪圖庫Turtle詳解(含豐富示例)
- 2010年408真題及答案解析
- 【課題研究設(shè)計與論證報告】深度學(xué)習(xí)視角下幼兒園自主游戲支持策略的實踐研究
- 0~36個月兒童中醫(yī)藥健康管理服務(wù)
- 第三章藥物的化學(xué)結(jié)構(gòu)與藥代動力
- 智慧樹關(guān)愛生命-自救與急救技能章節(jié)習(xí)題及答案
- 讓數(shù)據(jù)成為生產(chǎn)力-數(shù)據(jù)全生命周期管理
- “工匠精神”視域下的高職院校學(xué)生職業(yè)素養(yǎng)教育的路徑研究課題開題報告
- 不要等到畢業(yè)以后(升級版)
評論
0/150
提交評論